Displaying all 3 publications

Abstract:
Sort:
  1. Chan PW, Omar KZ, Ramanujam TM
    Pediatr Pulmonol, 2003 Aug;36(2):167-9.
    PMID: 12833497
    Matched MeSH terms: Lactones/therapeutic use*
  2. Nakagawa-Goto K, Chen JY, Cheng YT, Lee WL, Takeya M, Saito Y, et al.
    Mol Oncol, 2016 06;10(6):921-37.
    PMID: 27055598 DOI: 10.1016/j.molonc.2016.03.002
    Triple-negative breast cancer (TNBC) is associated with high grade, metastatic phenotype, younger patient age, and poor prognosis. The discovery of an effective anti-TNBC agent has been a challenge in oncology. In this study, fifty-eight ester derivatives (DETDs) with a novel sesquiterpene dilactone skeleton were organically synthesized from a bioactive natural product deoxyelephantopin (DET). Among them, DETD-35 showed potent antiproliferative activities against a panel of breast cancer cell lines including TNBC cell line MDA-MB-231, without inhibiting normal mammary cells M10. DETD-35 exhibited a better effect than parental DET on inhibiting migration, invasion, and motility of MDA-MB-231 cells in a concentration-dependent manner. Comparative study of DETD-35, DET and chemotherapeutic drug paclitaxel (PTX) showed that PTX mainly caused a typical time-dependent G2/M cell-cycle arrest, while DETD-35 or DET treatment induced cell apoptosis. In vivo efficacy of DETD-35 was evaluated using a lung metastatic MDA-MB-231 xenograft mouse model. DETD-35 significantly suppressed metastatic pulmonary foci information along with the expression level of VEGF and COX-2 in SCID mice. DETD-35 also showed a synergistic antitumor effect with PTX in vitro and in vivo. This study suggests that the novel compound DETD-35 may have a potential to be further developed into a therapeutic or adjuvant agent for chemotherapy against metastatic TNBC.
    Matched MeSH terms: Lactones/therapeutic use*
  3. Lim JC, Goh FY, Sagineedu SR, Yong AC, Sidik SM, Lajis NH, et al.
    Toxicol Appl Pharmacol, 2016 07 01;302:10-22.
    PMID: 27089844 DOI: 10.1016/j.taap.2016.04.004
    Andrographolide (AGP) and 14-deoxy-11,12-didehydroandrographolide (DDAG), two main diterpenoid constituents of Andrographis paniculata were previously shown to ameliorate asthmatic symptoms in a mouse model. However, due to inadequacies of both compounds in terms of drug-likeness, DDAG analogues were semisynthesised for assessment of their anti-asthma activity. A selected analogue, 3,19-diacetyl-14-deoxy-11,12-didehydroandrographolide (SRS27), was tested for inhibitory activity of NF-κB activation in TNF-α-induced A549 cells and was subsequently evaluated in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice, 6-8weeks old were sensitized on days 0 and 14, and challenged on days 22, 23 and 24 with OVA. Compound or vehicle (3% dimethyl sulfoxide) was administered intraperitoneally 1h before and 11h after each OVA aerosol challenge. On day 25, pulmonary eosinophilia, airway hyperresponsiveness, mucus hypersecretion, inflammatory cytokines such as IL-4, -5 and -13 in BAL fluid, gene expression of inflammatory mediators such as 5-LOX, E-selectin, VCAM-1, CCL5, TNF-α, AMCase, Ym2, YKL-40, Muc5ac, CCL2 and iNOS in animal lung tissues, and serum IgE were determined. SRS27 at 30μM was found to suppress NF-κB nuclear translocation in A549 cells. In the ovalbumin-induced mouse asthma model, SRS27 at 3mg/kg displayed a substantial decrease in pulmonary eosinophilia, BAL fluid inflammatory cytokines level, serum IgE production, mucus hypersecretion and gene expression of inflammatory mediators in lung tissues. SRS27 is the first known DDAG analogue effective in ameliorating inflammation and airway hyperresponsiveness in the ovalbumin-induced mouse asthma model.
    Matched MeSH terms: Lactones/therapeutic use*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links