Displaying all 4 publications

Abstract:
Sort:
  1. Sim KS, Lai MA, Tso CP, Teo CC
    J Med Syst, 2011 Feb;35(1):39-48.
    PMID: 20703587 DOI: 10.1007/s10916-009-9339-9
    A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.
    Matched MeSH terms: Image Processing, Computer-Assisted/statistics & numerical data
  2. Yazdani S, Yusof R, Karimian A, Riazi AH, Bennamoun M
    Comput Math Methods Med, 2015;2015:829893.
    PMID: 26089978 DOI: 10.1155/2015/829893
    Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI). We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM) method and the spatial information combined with support vector machine (SVM). The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR) and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets.
    Matched MeSH terms: Image Processing, Computer-Assisted/statistics & numerical data
  3. Leong SH, Ong SH
    PLoS One, 2017;12(7):e0180307.
    PMID: 28686634 DOI: 10.1371/journal.pone.0180307
    This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index.
    Matched MeSH terms: Image Processing, Computer-Assisted/statistics & numerical data*
  4. Abas FS, Shana'ah A, Christian B, Hasserjian R, Louissaint A, Pennell M, et al.
    Cytometry A, 2017 06;91(6):609-621.
    PMID: 28110507 DOI: 10.1002/cyto.a.23049
    The advance of high resolution digital scans of pathology slides allowed development of computer based image analysis algorithms that may help pathologists in IHC stains quantification. While very promising, these methods require further refinement before they are implemented in routine clinical setting. Particularly critical is to evaluate algorithm performance in a setting similar to current clinical practice. In this article, we present a pilot study that evaluates the use of a computerized cell quantification method in the clinical estimation of CD3 positive (CD3+) T cells in follicular lymphoma (FL). Our goal is to demonstrate the degree to which computerized quantification is comparable to the practice of estimation by a panel of expert pathologists. The computerized quantification method uses entropy based histogram thresholding to separate brown (CD3+) and blue (CD3-) regions after a color space transformation. A panel of four board-certified hematopathologists evaluated a database of 20 FL images using two different reading methods: visual estimation and manual marking of each CD3+ cell in the images. These image data and the readings provided a reference standard and the range of variability among readers. Sensitivity and specificity measures of the computer's segmentation of CD3+ and CD- T cell are recorded. For all four pathologists, mean sensitivity and specificity measures are 90.97 and 88.38%, respectively. The computerized quantification method agrees more with the manual cell marking as compared to the visual estimations. Statistical comparison between the computerized quantification method and the pathologist readings demonstrated good agreement with correlation coefficient values of 0.81 and 0.96 in terms of Lin's concordance correlation and Spearman's correlation coefficient, respectively. These values are higher than most of those calculated among the pathologists. In the future, the computerized quantification method may be used to investigate the relationship between the overall architectural pattern (i.e., interfollicular vs. follicular) and outcome measures (e.g., overall survival, and time to treatment). © 2017 International Society for Advancement of Cytometry.
    Matched MeSH terms: Image Processing, Computer-Assisted/statistics & numerical data*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links