Displaying all 4 publications

Abstract:
Sort:
  1. Huang T, Fakurazi S, Cheah PS, Ling KH
    Int J Mol Sci, 2023 Jun 10;24(12).
    PMID: 37373133 DOI: 10.3390/ijms24129980
    Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK-STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain.
    Matched MeSH terms: Hypoxia-Inducible Factor 1/metabolism
  2. Sousa Fialho MDL, Abd Jamil AH, Stannard GA, Heather LC
    Biochim Biophys Acta Mol Basis Dis, 2019 04 01;1865(4):831-843.
    PMID: 30266651 DOI: 10.1016/j.bbadis.2018.09.024
    Cardiovascular disease (CVD) accounts for the largest number of deaths worldwide, necessitating the development of novel treatments and prevention strategies. Given the huge energy demands placed on the heart, it is not surprising that changes in energy metabolism play a key role in the development of cardiac dysfunction in CVD. A reduction in oxygen delivery to the heart, hypoxia, is sensed and responded to by the hypoxia-inducible factor (HIF) and its family of proteins, by regulating the oxygen-dependent signalling cascade and subsequent response. Hypoxia is one of the main drivers of metabolic change in ischaemic disease and myocardial infarction, and we therefore suggest that HIF may be an attractive therapeutic target. In this review, we assess cardiac energy metabolism in health and disease, and how these can be regulated by HIF-1α activation. We then present an overview of research in the field of hypoxia-mimetic drugs recently developed in other treatment fields, which provide insight into the potential of systemic HIF-1α activation therapy for treating the heart.
    Matched MeSH terms: Hypoxia-Inducible Factor 1/metabolism*
  3. Lee SH, Golinska M, Griffiths JR
    Cells, 2021 Sep 09;10(9).
    PMID: 34572020 DOI: 10.3390/cells10092371
    In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
    Matched MeSH terms: Hypoxia-Inducible Factor 1/metabolism*
  4. Liew SY, Stanbridge EJ, Yusoff K, Shafee N
    J Ethnopharmacol, 2012 Nov 21;144(2):453-6.
    PMID: 23022321 DOI: 10.1016/j.jep.2012.09.024
    Microenvironmental conditions contribute towards varying cellular responses to plant extract treatments. Hypoxic cancer cells are known to be resistant to radio- and chemo-therapy. New therapeutic strategies specifically targeting these cells are needed. Plant extracts used in Traditional Chinese Medicine (TCM) can offer promising candidates. Despite their widespread usage, information on their effects in hypoxic conditions is still lacking. In this study, we examined the cytotoxicity of a series of known TCM plant extracts under normoxic versus hypoxic conditions.
    Matched MeSH terms: Hypoxia-Inducible Factor 1/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links