Displaying all 5 publications

Abstract:
Sort:
  1. Kapitonova MY, Muid S, Froemming GR, Yusoff WN, Othman S, Ali AM, et al.
    Malays J Pathol, 2012 Dec;34(2):103-13.
    PMID: 23424772 MyJurnal
    Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/physiology
  2. Jong HL, Mustafa MR, Vanhoutte PM, AbuBakar S, Wong PF
    Physiol Genomics, 2013 Apr 1;45(7):256-67.
    PMID: 23362143 DOI: 10.1152/physiolgenomics.00071.2012
    MicroRNAs (miRNAs) regulate various cellular processes. While several genes associated with replicative senescence have been described in endothelial cells, miRNAs that regulate these genes remain largely unknown. The present study was designed to identify miRNAs associated with replicative senescence and their target genes in human umbilical vein endothelial cells (HUVECs). An integrated miRNA and gene profiling approach revealed that hsa-miR-299-3p is upregulated in senescent HUVECs compared with the young cells, and one of its target genes could be IGF1. IGF1 was upregulated in senescent compared with young HUVECs, and knockdown of hsa-miR-299-3p dose-dependently increased the mRNA expression of IGF1, more significantly observed in the presenescent cells (passage 19) compared with the senescent cells (passage 25). Knockdown of hsa-miR-299-3p also resulted in significant reduction in the percentage of cells positively stained for senescence-associated β-galactosidase and increases in cell viability measured by MTT assay but marginal increases in cell proliferation and cell migration capacity measured by real-time growth kinetics analysis. Moreover, knockdown of hsa-miR-299-3p also increased proliferation of cells treated with H2O2 to induce senescence. These findings suggest that hsa-miR-299-3p may delay or protect against replicative senescence by improving the metabolic activity of the senesced cells but does not stimulate growth of the remaining cells in senescent cultures. Hence, these findings provide an early insight into the role of hsa-miR-299-3p in the modulation of replicative senescence in HUVECs.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/physiology*
  3. Tan AW, Liau LL, Chua KH, Ahmad R, Akbar SA, Pingguan-Murphy B
    Sci Rep, 2016 Feb 17;6:21828.
    PMID: 26883761 DOI: 10.1038/srep21828
    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/physiology*
  4. Ling WC, Liu J, Lau CW, Murugan DD, Mustafa MR, Huang Y
    Biochem Pharmacol, 2017 Jul 15;136:76-85.
    PMID: 28396195 DOI: 10.1016/j.bcp.2017.04.007
    Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25mg/kg/day) was administered via oral gavage for 11days to Ang II (1.2mg/kg/day)-infused C57BL/6J mice (8-10weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1-10nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11days reverses the impaired endothelial function and with a marked inhibition of AT1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/physiology
  5. Ang KP, Tan HK, Selvaraja M, Kadir AA, Somchit MN, Akim AM, et al.
    Planta Med, 2011 Nov;77(16):1782-7.
    PMID: 21614753 DOI: 10.1055/s-0030-1271119
    Development of early stage atherosclerosis involves the activation of endothelial cells by oxidized low-density lipoprotein (oxLDL) with subsequent increases in endothelial permeability and expression of adhesion molecules favoring the adherence of monocytes to the endothelium. Cryptotanshinone (CTS), a major compound derived from the Chinese herb Salvia miltiorrhiza, is known for its protective effects against cardiovascular diseases. The aim of this study was to determine whether CTS could prevent the oxLDL-induced early atherosclerotic events. OxLDL (100 µg/mL) was used to increase endothelial permeability and induce monocyte-endothelial cell adhesion in human umbilical vein endothelial cells (HUVECs). Endothelial nitric oxide (NO) concentrations, a permeability-regulating molecule, and expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were measured. Results show that a) endothelial hyperpermeability was suppressed by 94 % (p 
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/physiology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links