Displaying all 6 publications

Abstract:
Sort:
  1. Kandel S, Zaidi STR, Wanandy ST, Ming LC, Castelino RL, Sud K, et al.
    Perit Dial Int, 2017 11 21;38(1):49-56.
    PMID: 29162678 DOI: 10.3747/pdi.2017.00115
    BACKGROUND: Intraperitoneal (IP) administration of ceftazidime is recommended for the treatment of peritoneal dialysis-associated peritonitis (PDAP) from Pseudomonas. Patients with PDAP may also need IP heparin to overcome problems with drainage of turbid peritoneal dialysis (PD) fluids and blockage of catheters with fibrin. Physico-chemical stability of ceftazidime and heparin, and biological stability of heparin in many types of PD solutions is unknown. Therefore, we investigated the stability of ceftazidime and heparin in 4 types of PD solutions.

    METHODS: A total of 12 PD bags (3 for each type of solution) containing ceftazidime and heparin were prepared and stored at 4°C for 120 hours, and then at 25°C for 6 hours, and finally at 37°C for 12 hours. An aliquot was withdrawn after predefined time points and analyzed for the concentration of ceftazidime and heparin using high-performance liquid-chromatography (HPLC). Samples were assessed for pH, color changes, particle content, and anticoagulant activity of heparin.

    RESULTS: Ceftazidime and heparin retained more than 91% of their initial concentration when stored at 4°C for 120 hours followed by storage at 25°C for 6 hours and then at 37°C for 12 hours. Heparin retained more than 95% of its initial activity throughout the study period. Particle formation was not detected at any time under the storage conditions. The pH and color remained essentially unchanged throughout the study.

    CONCLUSIONS: Ceftazidime-heparin admixture retains its stability over long periods of storage at different temperatures, allowing its potential use for PDAP treatment in outpatient and remote settings.

    Matched MeSH terms: Heparin/chemistry*
  2. Kakavand M, Yazdanpanah G, Ahmadiani A, Niknejad H
    J Tissue Eng Regen Med, 2017 06;11(6):1701-1709.
    PMID: 26190586 DOI: 10.1002/term.2064
    Amniotic membrane (AM), a placenta-derived natural biomaterial, has several characteristics which make it a potential substitute for blood vessels. However, there are no reports on the effects of the AM on blood components. The aim of this study was to evaluate the blood compatibility of the epithelial and mesenchymal surfaces of the amnion for potential use in vascular tissue engineering. The activation of intrinsic and extrinsic pathways of the clotting system, haemolysis and platelet adhesion were studied and the results were compared with heparin-coated expanded polytetrafluoroethylene (ePTFE) as a standard synthetic vascular graft. Prothrombin time (PT), activated partial thromboplastin time (aPTT), clotting time (CT) and haemolysis (%) tests showed that both the epithelial and mesenchymal sides of the AM are haemocompatible. Platelet aggregation and P-selectin production from the platelets showed that the epithelial surface of the AM has less induction of platelet activation than ePTFE. The results of scanning electron microscopy (SEM) demonstrated that platelets in contact with ePTFE had a higher rate of adhesion than with the epithelial and mesenchymal surfaces of the AM. Moreover, the morphological distribution of the platelets showed that the majority of platelets were round, while a large number of cells on ePTFE were dendritic. These results suggest that the AM which contains epithelial and mesenchymal stem cells has appropriate haemocompatibility to be employed in vascular tissue engineering, especially as a vein substitute. Copyright © 2015 John Wiley & Sons, Ltd.
    Matched MeSH terms: Heparin/chemistry*
  3. Mendes K, Harmanjeet H, Sedeeq M, Modi A, Wanandy T, Zaidi STR, et al.
    Perit Dial Int, 2018 07 10;38(6):430-440.
    PMID: 29991562 DOI: 10.3747/pdi.2017.00274
    BACKGROUND: Infections caused by ceftazidime-resistant Pseudomonas and extended-spectrum beta-lactamase (ESBL)-producing gram-negative bacteria are increasing worldwide. Meropenem and piperacillin/tazobactam (PIP/TZB) are recommended for the treatment of peritoneal dialysis-associated peritonitis (PDAP) caused by ceftazidime-resistant Pseudomonas and other resistant gram-negative bacteria. Patients may also receive intraperitoneal heparin to prevent occlusion of their catheters. However, the stability of meropenem or PIP/TZB, in combination with heparin, in different types of peritoneal dialysis (PD) solutions used in clinical practice is currently unknown. Therefore, we investigated the stability of meropenem and PIP/TZB, each in combination with heparin, in different PD solutions.

    METHODS: A total of 15 PD bags (3 bags for each type of PD solution) containing meropenem and heparin and 24 PD bags (3 bags for each type of PD solution) containing PIP/TZB and heparin were prepared and stored at 4°C for 168 hours. The same bags were stored at 25°C for 3 hours followed by 10 hours at 37°C. An aliquot withdrawn before storage and at defined time points was analyzed for the concentration of meropenem, PIP, TZB, and heparin using high-performance liquid chromatography. Samples were also analysed for particle content, pH and color change, and the anticoagulant activity of heparin.

    RESULTS: Meropenem and heparin retained more than 90% of their initial concentration in 4 out of 5 types of PD solutions when stored at 4°C for 168 hours, followed by storage at 25°C for 3 hours and then at 37°C for 10 hours. Piperacillin/tazobactam and heparin were found to be stable in all 8 types of PD solutions when stored under the same conditions. Heparin retained more than 98% of its initial anticoagulant activity throughout the study period. No evidence of particle formation, color change, or pH change was observed at any time under the storage conditions employed in the study.

    CONCLUSIONS: This study provides clinically important information on the stability of meropenem and PIP/TZB, each in combination with heparin, in different PD solutions. The use of meropenem-heparin admixed in pH-neutral PD solutions for the treatment of PDAP should be avoided, given the observed suboptimal stability of meropenem.

    Matched MeSH terms: Heparin/chemistry*
  4. Ren X, Evangelista-Leite D, Wu T, Rajab TK, Moser PT, Kitano K, et al.
    Biomaterials, 2018 11;182:127-134.
    PMID: 30118980 DOI: 10.1016/j.biomaterials.2018.08.012
    Decellularized native extracellular matrix (ECM) biomaterials are widely used in tissue engineering and have reached clinical application as biomesh implants. To enhance their regenerative properties and postimplantation performance, ECM biomaterials could be functionalized via immobilization of bioactive molecules. To facilitate ECM functionalization, we developed a metabolic glycan labeling approach using physiologic pathways to covalently incorporate click-reactive azide ligands into the native ECM of a wide variety of rodent tissues and organs in vivo, and into the ECM of isolated rodent and porcine lungs cultured ex vivo. The incorporated azides within the ECM were preserved after decellularization and served as chemoselective ligands for subsequent bioconjugation via click chemistry. As proof of principle, we generated alkyne-modified heparin, immobilized it onto azide-incorporated acellular lungs, and demonstrated its bioactivity by Antithrombin III immobilization and Factor Xa inhibition. The herein reported metabolic glycan labeling approach represents a novel platform technology for manufacturing click-reactive native ECM biomaterials, thereby enabling efficient and chemoselective functionalization of these materials to facilitate tissue regeneration and repair.
    Matched MeSH terms: Heparin/chemistry*
  5. Tee HK, Tan CW, Yogarajah T, Lee MHP, Chai HJ, Hanapi NA, et al.
    PLoS Pathog, 2019 11;15(11):e1007863.
    PMID: 31730673 DOI: 10.1371/journal.ppat.1007863
    Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71.
    Matched MeSH terms: Heparin/chemistry
  6. Tan CW, Sam IC, Chong WL, Lee VS, Chan YF
    Antiviral Res, 2017 07;143:186-194.
    PMID: 28457855 DOI: 10.1016/j.antiviral.2017.04.017
    Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log10 PFU viral reduction with IC50value of ∼2.5-5 μg/ml (1.93 μM-3.85 μM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor.
    Matched MeSH terms: Heparin/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links