MATERIALS AND METHODS: This study evaluated the inter-observer variability in diagnosis of CHM, PHM and HA according to defined histologic criteria. Ninety abortus conception specimens were reviewed. Representative haematoxylin and eosin-stained slides were assigned independently to two pathologists who were asked to make a diagnosis of CHM, PHM or HA, and provide a report of the identified diagnostic histological criteria. Kappa value was calculated for the inter-observer agreement.
RESULTS: There was a total of 36.7% disagreement between two pathologists (K = 0.403, Strength of Agreement = moderate), of which 24.4% and 12.2%, were differentiating PHM from CHM and PHM from HA, respectively. Among defined diagnostic histological criteria, the highest rate of agreement was observed in the identification of cistern formation and hydropic changes (K = 0.746 and 0.686 respectively, Strength of Agreement = substantial).
CONCLUSION: There was moderate to substantial agreement rate between two pathologists in identification of two essential histologic criteria for diagnosis of molar pregnancies i.e. "hydropic change" and "trophoblastic proliferation".
Methods: In this study, AA was administered orally at an individual dose of 300 and 2000 mg/kg body weight to group 1 and 2 respectively, while group 3 served as normal control. All the animals were observed for 2 weeks to determine any behavioral and physical changes. On day 15, blood was collected for hematological and biochemical investigation, later animals from all the three groups were euthanized to harvest and store essential organs for histopathological analysis. Four different staining techniques; hematoxylin and eosin, Masson trichrome, Periodic acid Schiff and Oil O Red were used to investigate any alterations in different tissues through microscopical observation.
Results: The results of the study showed no morbidity and mortality at two different dosage of AA treatment. Daily food & water intake, body weight, relative organ weight, hematological and biochemical parameters were detected to be normal with no severe alteration seen through microscopical investigation in the structure of harvested tissues. Our findings support the safety profile of AA, which was well tolerated at higher dose. Thus, an in-detail study on the subacute disease model is warranted.
Materials and Methods: Twenty-five ICR mice and 20 BALB/C mice were used where five animals as control and the rest were randomly divided into four time points at 5, 10, 24 and 48 hours post-dosing (hpd). They were induced with 500 mg/kg APAP intraperitoneally. Liver sections were processed for hematoxylin-eosin staining and histopathological changes were scored based on grading methods.
Results: Intense centrilobular damage was observed as early as 5 hpd in BALB/C as compared to ICR mice, which was observed at 10 hpd. The difference of liver injury between ICR and BALB/C mice is due to dissimilarity in the genetic line-up that related to different elimination pathways of APAP toxicity. However, at 24 hpd, the damage was markedly subsided and liver regeneration had taken place for both ICR and BALB/C groups with evidence of mitotic figures. This study showed that normal liver architecture was restored after the clearance of toxic insult.
Conclusion: AILI was exhibited earlier in BALB/C than ICR mice but both underwent liver recovery at later time points.
METHODS: Smaller micro tissues (˂150 μm in diameter) mixed with Matrigel were engrafted subcutaneously into NSG mice to generate the passage 1 (P1) patient-derived xenograft. The micro tumours from P1 patient-derived xenograft were then excised and orthotopically xenografted into another batch of NSG mice to generate a metastatic colorectal cancer patient-derived xenograft, P2. Haematoxylin and eosin and immunohistochemistry staining were performed to compare the characters between patient-derived xenograft tumours and primary tumours.
RESULTS: About 16 out of 18 P1 xenograft models successfully grew a tumour for 50.8 ± 5.1 days (success rate 89.9%). Six out of eight P1 xenograft models originating from metastatic patients successfully grew tumours in the colon and metastasized to liver or lung in the NSG recipients for 60.9 ± 4.5 days (success rate 75%). Histological examination of both P1 and P2 xenografts closely resembled the histological architecture of the original patients' tumours. Immunohistochemical analysis revealed similar biomarker expression levels, including CDH17, Ki-67, active β-catenin, Ki-67 and α smooth muscle actin when compared with the original patients' tumours. The stromal components that support the growth of patient-derived xenograft tumours were of murine origin.
CONCLUSIONS: Metastatic patient-derived xenograft mouse model could be established with shorter time and higher success rate. Although the patient-derived xenograft tumours were supported by the stromal cells of murine origin, they retained the dominant characters of the original patient tumours.
METHODS: Sprague Dawley rats (n = 7, body weight = 300 g ± 50 g) were grouped randomly into two groups-control (n = 3) and expanded (n = 4). Anisotropic hydrogel tissue expanders were inserted into the frontal maxillofacial region of the rats in the expanded group. The rats were sacrificed, and skin samples were harvested, fixed in formalin, and embedded in paraffin wax for histological investigation. Hematoxylin and eosin staining was performed to detect histological changes between the two groups and to investigate the inflammatory response in the expanded samples. Three inflammatory markers, namely interleukin (IL)-1α, IL-6, and tumor necrosis factor-α (TNF-α), were analyzed by immunohistochemistry.
RESULT: IL-1-α expression was only observed in the expanded tissue samples compared to the controls. In contrast, there was no significant difference in IL-6, and TNF-α production. Histological analysis showed the absence of inflammatory response in expanded tissues, and a negative non-significant correlation (Spearman's correlation coefficient) between IL-1-α immune-positive cells and the inflammatory cells (r = -0.500). In conclusion, tissues that are expanded and stabilized using an anisotropic self-inflating hydrogel tissue expander might be useful for tissue replacement and engraftment as the expanded tissue does not show any sign of inflammatory responses. Detection of IL-1-α in the expanded tissues warrants further investigation for its involvement without any visible inflammatory response.
Methods: 21 day old male Sprague Dawley rats were assigned as Experiment-1 & 2 - PND rats were divided into 4 groups with interventions for 7 months (n = 8/group). NC- Normal control fed normal chow diet; OB- Obese group, fed high fat diet; OB + CHO + DHA- fed high fat diet and oral supplementation of choline, DHA. OB + EE- fed high fat diet along with exposure to enriched environment .Experiment-2 had similar groups and interventions as experiment 1 but for next 5 months were fed normal chow diet without any interventions. Body mass index was assessed and blood was analyzed for serum lipid profile. Common Carotid Artery (CCA) was processed for Haematoxylin and eosin, Verhoff Vangeison stains. Images of tissue sections were analyzed and quantified using image J and tissue quant software.
Results: In experiment.1, mean body mass index (p