Displaying all 12 publications

Abstract:
Sort:
  1. Nguyen TB, Nguyen TK, Chen CW, Chen WH, Bui XT, Lam SS, et al.
    Bioresour Technol, 2023 Aug;382:129182.
    PMID: 37210031 DOI: 10.1016/j.biortech.2023.129182
    In this study, biochar produced from sunflower seeds husk was activated through ZnCl2 to support the NiCo2O4 nanoparticles (NiCo2O4@ZSF) in catalytic activation of peroxymonosulfate (PMS) toward tetracycline (TC) removal from aqueous solution. The good dispersion of NiCo2O4 NPs on the ZSF surface provided sufficient active sites and abundant functional groups for the adsorption and catalytic reaction. The NiCo2O4@ZSF activating PMS showed high removal efficiency up to 99% after 30 min under optimal condition ([NiCo2O4@ZSF] = 25 mg L-1, [PMS] = 0.04 mM, [TC] = 0.02 mM and pH = 7). The catalyst also exhibited good adsorption performance with a maximum adsorption capacity of 322.58 mg g-1. Sulfate radicals (SO4•-), superoxide radical (O2•-), and singlet oxygen (1O2) played a decisive role in the NiCo2O4@ZSF/PMS system. In conclusion, our research elucidated the production of highly efficient carbon-based catalysts for environmental remediation, and also emphasized the potential application of NiCo2O4 doped biochar.
    Matched MeSH terms: Helianthus*
  2. Nasim W, Belhouchette H, Tariq M, Fahad S, Hammad HM, Mubeen M, et al.
    Environ Sci Pollut Res Int, 2016 Feb;23(4):3658-70.
    PMID: 26498803 DOI: 10.1007/s11356-015-5613-1
    Nitrogen (N) fertilizer is an important yield limiting factor for sunflower production. The correlation between yield components and growth parameters of three sunflower hybrids (Hysun-33, Hysun-38, Pioneer-64A93) were studied with five N rates (0, 60, 120, 180, 240 kg ha(-1)) at three different experimental sites during the two consecutive growing seasons 2008 and 2009. The results revealed that total dry matter (TDM) production and grain yield were positively and linearly associated with leaf area index (LAI), leaf area duration (LAD), and crop growth rate (CGR) at all three sites of the experiments. The significant association of yield with growth components indicated that the humid climate was most suitable for sunflower production. Furthermore, the association of these components can be successfully used to predict the grain yield under diverse climatic conditions. The application of N at increased rate of 180 kg ha(-1) resulted in maximum yield as compared to standard rate (120 kg ha(-1)) at all the experimental sites. In this way, N application rate was significantly correlated with growth and development of sunflower under a variety of climatic conditions. Keeping in view such relationship, the N dose can be optimized for sunflower crop in a particular region to maximize the productivity. Multilocation trails help to predict the input rates precisely while taking climatic variations into account also. In the long run, results of this study provides basis for sustainable sunflower production under changing climate.
    Matched MeSH terms: Helianthus/growth & development*
  3. Sher A, Arfat MY, Ul-Allah S, Sattar A, Ijaz M, Manaf A, et al.
    PLoS One, 2021;16(12):e0260673.
    PMID: 34932582 DOI: 10.1371/journal.pone.0260673
    Sunflower production is significantly lower in arid and semi-arid regions due to various crop management problem. Conservation of tillage provides the most excellent opportunity to reduce degradation of soil reserves and increase soil productivity. The main objective of this study was to investigate the combined effects of conservation tillage and drought stress on growth and productivity of different sunflower hybrids. Experimental treatments included two sunflower hybrids ('NK-Senji' and 'S-278'), two drought stress treatments (i.e., well-watered and drought stress at flowering and grain filling stages) and three tillage practices (i.e., conservation, minimum and deep tillage). The results indicated that morphological and physiological parameters, and yield-related traits were significantly (P≤0.05) affected by all individual factors; however, their interactive effects were non-significant. Among sunflower hybrids, 'NK-Senji' performed better for morphological, physiological, and yield-related traits than 'S-278'. Similarly, conservation tillage observed better traits compared to the rest of the tillage practices included in the study. Nonetheless, conservation tillage improved growth and yield-related traits of hybrid 'NK-Senji' under drought stress. Hence, it is concluded that conservation tillage can improve the productivity of sunflower under low moisture availability. Therefore, conservation tillage could be suggested in the areas of lower water ability to improve sunflower production. Nonetheless, sunflower hybrids or varieties need thorough testing for their adaptability to conservation tillage and low moisture availability before making recommendations.
    Matched MeSH terms: Helianthus/genetics; Helianthus/growth & development*; Helianthus/metabolism
  4. Rohman A, Che Man YB
    Food Chem, 2011 Nov 15;129(2):583-588.
    PMID: 30634271 DOI: 10.1016/j.foodchem.2011.04.070
    Currently, the authentication of virgin coconut oil (VCO) has become very important due to the possible adulteration of VCO with cheaper plant oils such as corn (CO) and sunflower (SFO) oils. Methods involving Fourier transform mid infrared (FT-MIR) spectroscopy combined with chemometrics techniques (partial least square (PLS) and discriminant analysis (DA)) were developed for quantification and classification of CO and SFO in VCO. MIR spectra of oil samples were recorded at frequency regions of 4000-650cm-1 on horizontal attenuated total reflectance (HATR) attachment of FTIR. DA can successfully classify VCO and that adulterated with CO and SFO using 10 principal components. Furthermore, PLS model correlates the actual and FTIR estimated values of oil adulterants (CO and SFO) with coefficient of determination (R2) of 0.999.
    Matched MeSH terms: Helianthus
  5. Abdulkarim, S.M., Ghazali, H.M.
    MyJurnal
    HyperDSC™(fast scan rate) was used to study the melting behavior of canola (CLO), sunflower (SFO), palm olein (PO), rice bran oils (RBO), and cocoa butter (CB), and was compared to the melting behaviors using conventional DSC. There was an increase in sensitivity with increase in scan rate. Slow scan rate (5 to 20C/min) gave low sensitivity, which increased when the scan rates were increased to 50, 100 and 200C/min. Peak resolution was affected by scan rate depending on the sample weight. Increase in the size of sample coupled with the use of fast scan rate decreased the peak resolution. Generally small sample sizes gave better peak resolution. Results of the effect of scan rate on glass transition (Tg) shows that Tg, which is a weak transition especially in crystalline and low amorphous materials was not detected using conventional scan rates (5 to 20oC/min). It was however detected using of hyperDSC™ scan rates (100 to 200oC/min). Increasing the scan rate resulted in an increase in the peak temperature and the elimination of shoulder peaks, which were caused due to the polymorphic behavior of the triacylglycerols in the oils. The increase in peak temperature caused a shift in the peak position towards a higher temperature value. There is a positive correlation between the peak temperature and scan rate. The correlation coefficients (r) for CLO, SFO, PO, RBO and CB were 0.96, 0.95, 0.97, 0.96 and 0.96 respectively.
    Matched MeSH terms: Helianthus
  6. Shehzad MA, Maqsood M, Abbas T, Ahmad N
    Sains Malaysiana, 2016;45:1497-1507.
    Boron (B) is a mineral considered essential for improving sunflower (Helianthus annuus L.) resistance to drought. B supplements (0, 15-, 30- and 45 mg L-1) under well-watered and variable water deficit levels (64 and 53 mm irrigation depths) were evaluated for their effects on growth, oil quality and water use efficiency (WUE) in a field study for two consecutive years (i.e. 2011 and 2012). The duration of 50% inflorescence emergence, 50% flowering and 50% maturity stages were reduced with increasing moisture stress. All B application rates improved sunflower growth compared to no B control treatment. The moisture deficit treatments of 64 and 53 mm irrigation depths significantly (p<0.05) reduced the yield-related components. Achenes/head, achenes weight and achene yield under water stress conditions were considerably improved by foliar application of B at 30 mg L-1. An increase in protein contents and a decrease in oil contents were observed with B foliar application under moisture deficit treatments. Foliar application of B (30 mg L-1) on water stressed plants also resulted in increased WUE. The highest net benefits were achieved with B concentration of 30 mg L-1 under well-watered and mild deficit water level of 64 mm irrigation depth. The highest application rate of B (45 mg L-1) gave the best results at the most severe water deficit level. In conclusion, the B rates of 30 and 41 mg L-1 performed best for improving drought tolerance in terms of higher sunflower productivity under mild and higher water deficit conditions
    Matched MeSH terms: Helianthus
  7. Rath A, Ramamurthy PH, Fernandes BA, Sidhu P
    J Conserv Dent, 2017 9 1;20(2):134-136.
    PMID: 28855763 DOI: 10.4103/0972-0707.212237
    Tooth surface loss (TSL) is a complex phenomenon characterized by the loss of hard tooth structure at various locations of the teeth, usually due to more than one factor. TSL due to abrasion can be significant in patients consuming coarse, abrasive diet. The present case reports an interesting incisal edge abrasion in a female patient, attributed to a particular dietary behavior of long-term consumption of sunflower seeds. All her family members and most of the people from her native place were also reported to have similar lesions by the patient. Larger epidemiological studies to assess the prevalence and severity of such abrasive lesions in geographic areas with this particular dietary habit need to be carried out so that people may be made aware and educated about alternative ways of eating sunflower seeds that will not cause any form of tooth wear.
    Matched MeSH terms: Helianthus
  8. Hameed BH
    J Hazard Mater, 2008 Jun 15;154(1-3):204-12.
    PMID: 18023971
    In this work, sunflower (Helianthus annuus L.) seed hull (SSH), an agricultural waste, was evaluated for its ability to remove methyl violet (MV) from aqueous solutions. Sorption isotherm of MV onto the SSH was determined at 30 degrees C with the initial concentrations of MV in the range of 25-300 mg/L. The equilibrium data were analyzed using the Langmuir, Freundlich and Temkin isotherm models. The equilibrium process was described well by the Freundlich isotherm model. The maximum SSH sorption capacity was found to be 92.59 mg/L at 30 degrees C. The kinetic data were studied in terms of the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The pseudo-second-order model best described the sorption process. A single-stage batch-adsorber design of the adsorption of MV onto SSH was studied based on the Freundlich isotherm equation. The results indicated that sunflower seed hull was an attractive candidate for removing methyl violet from aqueous solution.
    Matched MeSH terms: Helianthus*
  9. Rahman MM, Azirun SM, Boyce AN
    PLoS One, 2013;8(5):e62941.
    PMID: 23667546 DOI: 10.1371/journal.pone.0062941
    Soil contamination by copper (Cu) and lead (Pb) is a widespread environmental problem. For phytoextraction to be successful and viable in environmental remediation, strategies that can improve plant uptake must be identified. In the present study we investigated the use of nitrogen (N) fertilizer as an efficient way to enhance accumulation of Cu and Pb from contaminated industrial soils into amaranth, Indian mustard and sunflower.
    Matched MeSH terms: Helianthus/metabolism*
  10. Akbar, I., Jaswir, I., Jamal, P.
    MyJurnal
    Gelatine obtained from fish skin has become a potential source of preparing nanoparticles and
    encapsulation of bioactive compounds. Within these fish skin, gelatine nanoparticles show
    potent benefits for application in pharmaceutical and cosmetic industry. The encapsulated
    bioactive ingredients within nanoparticles have improved bioavailability, delivery properties,
    and solubility of the nutraceuticals within the human body and blood stream. Many of such
    bioactive peptides (biopeptides) are potent antioxidants; and as oxidative stress is the main
    cause of the onset of various chronic diseases, encapsulation of antioxidant biopeptides within
    fish gelatine nanoparticles could be a potential remedy to prevent or delay the onset of such
    diseases and for better health prospects. The purpose of the present work was to prepare a
    simple, safe, and reproducible novel food delivery nanoparticle system encapsulating a desirable antioxidant biopeptide. An optimisation study was conducted to produce a desirable size
    of gelatine nanoparticles which showed a higher encapsulation efficiency of an antioxidant
    biopeptide. Sunflower biopeptide was chosen as the antioxidant biopeptide, as the activity of
    this protein hydrolysate is quite high at DPPH of 89% and FRAP assay of 968 µm/L. Tilapia
    fish was used as gelatine source at an average yield of the process at 10% wt/wt. Effects of
    parameters such as pH, biopeptide concentration, and cross-linking agent ‘glutaraldehyde’ on
    the size, stability, and encapsulation efficiency on the nanoparticles were studied. The average
    diameter of the biopeptide loaded gelatine nanoparticle was between 228.3 and 1,305 nm.
    Encapsulation efficiency was 76% at an optimal pH of 2, glutaraldehyde concentration of 2
    mL, and biopeptide concentration of 0.1 mg/mL exhibited DPPH at 92% and FRAP assay of
    978 µm/L. To understand the absorption of sunflower biopeptide in stomach, blood stream,
    and biopeptide release of the gelatine nanoparticles, biopeptide loaded gelatine nanoparticles
    were subjected to simulated gastrointestinal conditions mimicking human stomach and
    intestine; and showed peptide release of 0.1464 and 0.277 mg/mL upon pepsin and pancreatin
    digestion, respectively.
    Matched MeSH terms: Helianthus
  11. Nasyrah, A.R., Marikkar, J.M.N., Dzulkifly, M.H.
    MyJurnal
    A study was carried out to distinguish mono- (MAG) and di-acylglycerol (DAG) from plant lipids such as sunflower, rapeseed and soybean oil, from those derived from animal fats such as lard, goat fat and beef fat using fatty acid and thermal profile data. MAG and DAG of both plant and animal lipids were synthesized according to a chemical glycerolysis method catalyzed by sodium hydroxide. MAG and DAG of individual lipid were isolated and purified using the standard column chromatography method and subjected to fatty acid analysis by gas chromatography (GC) and thermal analysis by differential scanning calorimetry (DSC). The application of principal component analysis (PCA) to the data collected from the individual instrumental technique showed that it was possible to distinctly classify MAG and DAG of plant lipids from those derived from animal fats.
    Matched MeSH terms: Helianthus
  12. Tiong SH, Saparin N, Teh HF, Ng TLM, Md Zain MZB, Neoh BK, et al.
    J Agric Food Chem, 2018 Jan 31;66(4):999-1007.
    PMID: 29260544 DOI: 10.1021/acs.jafc.7b04995
    During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products. Analysis of the chlorine isotope mass pattern exhibited in high-resolution mass spectrometry enabled organochlorine compound identification in crude palm oils as constituents of wax esters, fatty acid, diacylglycerols, and sphingolipids, which are produced endogenously in oil palm mesocarp throughout ripening. Analysis of thermal decomposition and changes during refining suggested that these naturally present organochlorine compounds in palm oils and perhaps in other vegetable oils are precursors of 3-MCPD esters. Enrichment and dose-response showed a linear relationship to 3-MCPD ester formation and indicated that the sphingolipid-based organochlorine compounds are the most active precursors of 3-MCPD esters.
    Matched MeSH terms: Helianthus
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links