Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Ong SB, Lu S, Katwadi K, Ismail NI, Kwek XY, Hausenloy DJ
    Future Cardiol, 2017 05;13(3):195-198.
    PMID: 28569551 DOI: 10.2217/fca-2017-0012
    Matched MeSH terms: Mitochondria, Heart/drug effects*
  2. Islam MN, Khan J, Jaafar H
    Leg Med (Tokyo), 2009 Apr;11 Suppl 1:S143-6.
    PMID: 19345604 DOI: 10.1016/j.legalmed.2009.02.045
    Series of experiments have been completed with Methamphetamine (MA). Some were with the higher, medium or lower duration of MA administration and some were with acute or chronic doses. Whatever may be the dose or duration the ultimate result came out with the further establishment of cardio-toxic effect of this drug. Cardiovascular symptoms related to MA toxicity include chest pain, palpitations, dyspnoea, hypertension, tachycardia, atrial and ventricular arrhythmias, and myocardial ischemia. MA abusers often go through a repeated pattern of frequent drug administrations followed by a period of abstinence. Previous studies have focused largely upon the chronic effect of MA intake to major organs, such as the brains and the heart, by using animal experiments. However, there is a lack of research into the effects of acute dose of MA, especially pertaining to the heart. To clarify the effect of MA on myocardium, 22 male Wister rats aged six weeks were divided into MA, Placebo (P) and Control (C) group were examined following single intraperitoneal administration of MA at a dose of 50 mg/kg body weight. Normal saline was similarly injected in P group. Light microscopic changes was seen in the myocardium of MA treated group including cellular infiltration, with clusters of macrophage-like cells having large nuclei and little cytoplasm evident in the sub-endocardium region. There were presence of few macrophages, leucocytes, and spindle-like fibroblasts. Bringing in to account of cardiac changes by a single dose of MA, slogan should be voiced out to leave methamphetamine.
    Matched MeSH terms: Heart/drug effects*
  3. Kalra J, Prakash A, Kumar P, Majeed AB
    J Renin Angiotensin Aldosterone Syst, 2015 Sep;16(3):459-68.
    PMID: 25944853 DOI: 10.1177/1470320315583582
    Work on the brain renin-angiotensin system has been explored by various researchers and has led to elucidation of its basic physiologies and behavior, including its role in reabsorption and uptake of body fluid, blood pressure maintenance with angiotensin II being its prominent effector. Currently, this system has been implicated for its newly established effects, which are far beyond its cardio-renal effects accounting for maintenance of cerebral blood flow and cerebroprotection, seizure, in the etiology of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and bipolar disorder. In this review, we have discussed the distribution of angiotensin receptor subtypes in the central nervous system (CNS) together with enzymatic pathways leading to active angiotensin ligands and its interaction with angiotensin receptor 2 (AT2) and Mas receptors. Secondly, the use of angiotensin analogues (angiotensin converting enzyme inhibitors and AT1 and/or AT2 receptor blockers) in the treatment and management of the CNS disorders mentioned above has been discussed.
    Matched MeSH terms: Heart/drug effects*
  4. Singh N, Menon V
    Med J Malaysia, 1975 Mar;30(3):209-13.
    PMID: 1160681
    Matched MeSH terms: Heart/drug effects
  5. Leong XF, Aishah A, Nor Aini U, Das S, Jaarin K
    Arch Med Res, 2008 Aug;39(6):567-72.
    PMID: 18662587 DOI: 10.1016/j.arcmed.2008.04.009
    Palm oil used worldwide contains considerable amounts of antioxidants, namely, vitamin E and carotenes. The purpose of the study was to observe the effect of heated palm oil on blood pressure and observe the cardiac histological changes in rats.
    Matched MeSH terms: Heart/drug effects*
  6. Yusoff NSN, Mustapha Z, Sharif SET, Govindasamy C, Sirajudeen KNS
    PMID: 28605330 DOI: 10.1615/JEnvironPatholToxicolOncol.2017014521
    Oxidative stress has been suggested to play a role in hypertension- and hypertension-induced organ damage. The effect of antihypertensive drug treatments on oxidative stress markers has not been well assessed. Therefore, in this study we investigated the effect of enalapril on oxidative stress markers in hearts of hypertensive rat models such as spontaneously hypertensive rats (SHR) and SHRs administered N-nitro-L-arginine methyl ester (SHR+L-NAME rats). Male rats were divided into four groups: SHRs, SHR+enalapril (SHR-E) rats, SHR+L-NAME rats, SHR+enalapril+L-NAME (SHRE+L-NAME) rats. Rats (SHREs) were administered enalapril (30 mg kg-1 day-1) in drinking water from week 4 to week 28 and L-NAME (25 mg kg-1 day-1) from week 16 to week 28 in drinking water. At the end of 28 weeks, animals were sacrificed, and their hearts were collected for the assessment of oxidative stress markers and histological examination. Enalapril treatment significantly enhanced the total antioxidant status (TAS) (P < 0.001), reduced the oxidized glutathione ratio (GSH : GSSG) (P < 0.001), and reduced to thibarbituric acid reactive substances (TBARS) (P < 0.001) and protein carbonyl content (PCO) (P < 0.001), which thus reduced the oxidative stress in the heart. The fibrosis areas in SHRs and SHR+L-NAME rats were also markedly reduced. These findings suggest that enalapril might play a protective role in hypertension- and hypertension-induced organ damage.
    Matched MeSH terms: Heart/drug effects*
  7. Pour BM, Latha LY, Sasidharan S
    Molecules, 2011 May 03;16(5):3663-74.
    PMID: 21540795 DOI: 10.3390/molecules16053663
    BACKGROUND: The objective of this study was to investigate the toxicity of Lantana camara methanol extract.

    METHODS: In order to evaluate the toxicity of Lantana camara, the acute toxicity of the methanolic extract on adult mice and cytotoxicity test on Vero cell line were investigated. A fixed large dose of 2 g/kg body weight of L. camara leaf extract was administrated by a single oral gavage according to the OECD procedure.

    RESULTS: In 2 weeks, L. camara leaf extract showed no obvious acute toxicity. While female mice lost body weight after being treated with single dose of leaf extract in acute toxicity test, male ones lost organ mass, particularly for heart and kidney. The biochemical liver function tests showed significantly elevated TBIL and ALT in the L. camara leaf extract treated female mice group compared with the control group. Cytotoxicity effect of leaf extract of L. camara was estimated through a MTT assay. Cytotoxicity tests on Vero cell line disclosed that leaf extract at concentrations up to 500 µg/mL inhibited the growth of cells 2.5 times less than did Triton 100 × 1%. More interestingly, the cytotoxicity initiated to decline at elevated concentrations of this extract.

    CONCLUSIONS: The results of both tests confirm that L. camara shows a pro toxic effect.

    Matched MeSH terms: Heart/drug effects
  8. John CM, Khaddaj Mallat R, Mishra RC, George G, Singh V, Turnbull JD, et al.
    Pharmacol Res, 2020 01;151:104539.
    PMID: 31707036 DOI: 10.1016/j.phrs.2019.104539
    Aging represents an independent risk factor for the development of cardiovascular disease, and is associated with complex structural and functional alterations in the vasculature, such as endothelial dysfunction. Small- and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) are prominently expressed in the vascular endothelium, and pharmacological activators of these channels induce robust vasodilation upon acute exposure in isolated arteries and intact animals. However, the effects of prolonged in vivo administration of such compounds are unknown. In our study, we hypothesized that such treatment would ameliorate aging-related cardiovascular deficits. Aged (∼18 months) male Sprague Dawley rats were treated daily with either vehicle or the KCa channel activator SKA-31 (10 mg/kg, intraperitoneal injection; n = 6/group) for 8 weeks, followed by echocardiography, arterial pressure myography, immune cell and plasma cytokine characterization, and tissue histology. Our results show that SKA-31 administration improved endothelium-dependent vasodilation, reduced agonist-induced vascular contractility, and prevented the aging-associated declines in cardiac ejection fraction, stroke volume and fractional shortening, and further improved the expression of endothelial KCa channels and associated cell signalling components to levels similar to those observed in young male rats (∼5 months at end of study). SKA-31 administration did not promote pro-inflammatory changes in either T cell populations or plasma cytokines/chemokines, and we observed no overt tissue histopathology in heart, kidney, aorta, brain, liver and spleen. SKA-31 treatment in young rats had little to no effect on vascular reactivity, select protein expression, tissue histology, plasma cytokines/chemokines or immune cell properties. Collectively, these data demonstrate that administration of the KCa channel activator SKA-31 improved aging-related cardiovascular function, without adversely affecting the immune system or promoting tissue toxicity.
    Matched MeSH terms: Heart/drug effects*
  9. Fujimoto Y, Suzuki Y, Kanaiwa T, Amiya T, Hoshi K, Fujino S
    J. Pharmacobio-dyn., 1983 Feb;6(2):128-35.
    PMID: 6306201
    The present research is on a milky sap obtained from the Antiaris toxicaria tree (Moraceae) which is called Upas or Ipoh in Indonesia. The crude sap was administered to anesthetized rats, and changes in electrocardiogram (ECG) and systemic blood pressure was observed. Biologically and pharmacologically active components were extracted from the crude sap by means of water-acetone solution. Based on the strength of chemical qualitative detection tests of the sap extract (SE), cardiac glycosides are supposed to be the main components. The SE inhibited the Na+-, K+-ATPase (EC 3.6.1.3) which was partially purified from guinea pig heart muscle. When the SE and, concurrently, authentic ouabain were applied to isolated frog heart muscles, the fall of twitch tension was observed after the increased tension on mechanograms. These facts suggest that the main components of the milky sap are cardiac glycosides, and glycosides affect Na+, K+-ATPase activity of muscle membrane and heart muscle contraction.
    Matched MeSH terms: Heart/drug effects
  10. Teah YF, Abduraman MA, Amanah A, Adenan MI, Sulaiman SF, Tan ML
    Food Chem Toxicol, 2017 Sep;107(Pt A):293-301.
    PMID: 28689918 DOI: 10.1016/j.fct.2017.07.011
    Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 μM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 μM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and Ikr blocker.
    Matched MeSH terms: Heart/drug effects
  11. Cheah HY, Šarenac O, Arroyo JJ, Vasić M, Lozić M, Glumac S, et al.
    Nanotoxicology, 2017 03;11(2):210-222.
    PMID: 28098511 DOI: 10.1080/17435390.2017.1285071
    Conjugation of Doxorubicin (DOX) to N-(2-hydroxypropyl) methylacrylamide copolymer (HPMA) has significantly reduced the DOX-associated cardiotoxicity. However, the reports on the impact of HPMA-DOX conjugates on the cardiovascular system such as blood pressure (BP) and heart rate (HR) were in restrained animals using tail cuff and/or other methods that lacked the resolution and sensitivity. Herein, we employed radiotelemetric-spectral-echocardiography approach to further understand the in vivo cardiovascular hemodynamics and variability post administration of free DOX and HPMA-DOX. Rats implanted with radio-telemetry device were administered intravenously with DOX (5 mg/kg), HPMA-DOX (5 mg DOX equivalent/kg) and HPMA copolymer and subjected to continuous cardiovascular monitoring and echocardiography for 140 days. We found that DOX-treated rats had ruffled fur, reduced body weight (BW) and a low survival rate. Although BP and HR were normal, spectral analysis indicated that their BP and HR variabilities were reduced. All rats exhibited typical signs of cardiotoxicity at histopathology. In contrast, HPMA-DOX rats gained weight over time and survived. Although BP, HR and related variabilities were unaffected, the left ventricular end diastolic volume (EDV) of these rats, as well as of the HPMA copolymer-treated rats, was found increased at the end of observation period. Additionally, HPMA copolymer caused microscopic injury of the heart tissue. All of these suggest the necessity of caution when employing HPMA as carrier for prolonged drug delivery. The current study also indicates the potential of radiotelemetric-spectral-echocardiography approach for improved preclinical cardiovascular risk assessment of polymer-drug conjugate and other nano-sized-drug constructs.
    Matched MeSH terms: Heart/drug effects*
  12. Mohammed Yusof NL, Zainalabidin S, Mohd Fauzi N, Budin SB
    Appl Physiol Nutr Metab, 2018 Dec;43(12):1224-1232.
    PMID: 29726706 DOI: 10.1139/apnm-2018-0084
    Diabetes mellitus is often associated with cardiac functional and structural alteration, an initial event leading to cardiovascular complications. Roselle (Hibiscus sabdariffa) has been widely proven as an antioxidant and recently has incited research interest for its potential in treating cardiovascular disease. Therefore, this study aimed to determine the cardioprotective effects of H. sabdariffa (roselle) polyphenol-rich extract (HPE) in type-1-induced diabetic rats. Twenty-four male Sprague-Dawley rats were randomized into 4 groups (n = 6/group): nondiabetic, diabetic alone (DM), diabetic supplemented with HPE (DM+HPE), and diabetic supplemented with metformin. Type-1 diabetes was induced with streptozotocin (55 mg/kg intraperitoneally). Rats were forced-fed with HPE (100 mg/kg) and metformin (150 mg/kg) daily for 8 weeks. Results showed that HPE supplementation improved hyperglycemia and dyslipidemia significantly (p < 0.05) in the DM+HPE compared with the DM group. HPE supplementation attenuated cardiac oxidative damage in the DM group, indicated by low malondialdehyde and advanced oxidation protein product. As for the antioxidant status, HPE significantly (p < 0.05) increased glutathione level, as well as catalase and superoxide dismutase 1 and 2 activities. These findings correlate with cardiac function, whereby left ventricle developed pressure in DM+HPE (79.13 ± 3.08 mm Hg) was higher significantly compared with DM (45.84 ± 1.65 mm Hg). Coronary flow of DM+HPE (17.43 ± 0.62 mL/min) was also greater compared with DM (13.02 ± 0.6 mL/min), showing that HPE supplementation improved cardiac contractility and relaxation rate significantly (p < 0.05). Histological analysis showed a marked decrease in cardiomyocyte hypertrophy and fibrosis in DM+HPE compared with the DM group. Ultrastructural changes and impairment of mitochondria induced by diabetes were minimized by HPE supplementation. Collectively, these findings suggest that HPE is a potential cardioprotective agent in a diabetic setting through its hypoglycemic, anti-hyperlipidemia, and antioxidant properties.
    Matched MeSH terms: Heart/drug effects*
  13. Toh HT
    Am J Chin Med, 1994;22(3-4):275-84.
    PMID: 7872239
    Heart mitochondria freshly isolated from ginseng treated rats respired higher at ADP-induced, state 3 respiratory rates and with greater respiratory indices. These mitochondria were less susceptible to experimentally-induced functional impairment. Control heart mitochondria incubated with ginseng extract also showed that ginseng prevented mitochondria from incubation induced deterioration with NAD-linked substrates. Comparison of force of contraction of isolated, perfused and electrically paced hearts showed that deterioration of the force of heart contraction was consistently smaller throughout the experiment in hearts from ginseng treated rats. These results indicated that Panax ginseng was able to delay experimentally induced heart mitochondrial impairment and muscle contraction deterioration.
    Matched MeSH terms: Mitochondria, Heart/drug effects*
  14. Al-Afifi NA, Alabsi AM, Bakri MM, Ramanathan A
    BMC Complement Altern Med, 2018 Feb 05;18(1):50.
    PMID: 29402248 DOI: 10.1186/s12906-018-2110-3
    BACKGROUND: Dracaena cinnabari (DC) is a perennial tree that located on the Southern coast of Yemen native to the Socotra Island. This tree produces a deep red resin known as the Dragon's blood, the Twobrother's Blood or Damm Alakhwain. The current study performed to evaluate the safety of the DC resin methanol extract after a single or 28 consecutive daily oral administrations.

    METHODS: In assessing the safety of DC resin methanol extract, acute and sub-acute oral toxicity tests performed following OECD guidelines 423 and 407, respectively, with slight modifications. In acute oral toxicity test, DC resin methanol extract administered to female Sprague Dawley rats by oral gavage at a single dose of 300 and 2000 mg/kg body weight. Rats observed for toxic signs for 14 days. In sub-acute oral toxicity test, DC resin methanol extract administered to the rats by oral gavage at 500, 1000, and 1500 mg/kg body weight daily up to 28 days to male and female Spradgue Dawley rats. The control and high dose in satellite groups were also maintained and handled as the previous groups to determine the late onset toxicity of DC resin methanol extract. At the end of each test, hematological and biochemical analysis of the collected blood were performed as well as gross and microscopic pathology.

    RESULTS: In acute oral toxicity, no treatment-related death or toxic signs were observed. It revealed that the DC resin methanol extract could be well tolerated up to the dose 2000 mg/kg body weight and could be classified as Category 5. The sub-acute test observations indicated that there are no treatment-related changes up to the high dose level compared to the control. Food consumption, body weight, organ weight, hematological parameters, biochemical parameters and histopathological examination (liver, kidney, heart, spleen and lung) revealed no abnormalities. Water intake was significantly higher in the DC resin methanol extract treated groups compared to the control.

    CONCLUSION: This study demonstrates tolerability of DC resin methanol extract administered daily for 28 days up to 1500 mg/kg dose.

    Matched MeSH terms: Heart/drug effects
  15. Awang K, Abdullah NH, Hadi AH, Fong YS
    J Biomed Biotechnol, 2012;2012:876458.
    PMID: 22536026 DOI: 10.1155/2012/876458
    The dichloromethane (DCM) extract of Andrographis paniculata Nees was tested for cardiovascular activity. The extract significantly reduced coronary perfusion pressure by up to 24.5 ± 3.0 mm Hg at a 3 mg dose and also reduced heart rate by up to 49.5 ± 11.4 beats/minute at this dose. Five labdane diterpenes, 14-deoxy-12-hydroxyandrographolide (1), 14-deoxy-11,12-didehydroandrographolide (2), 14-deoxyandrographolide (3), andrographolide (4), and neoandrographolide (5), were isolated from the aerial parts of this medicinal plant. Bioassay-guided studies using animal model showed that compounds, (2) and (3) were responsible for the coronary vasodilatation. This study also showed that andrographolide (4), the major labdane diterpene in this plant, has minimal effects on the heart.
    Matched MeSH terms: Heart/drug effects*
  16. Bonsu KO, Kadirvelu A, Reidpath DD
    Syst Rev, 2013;2:22.
    PMID: 23618535 DOI: 10.1186/2046-4053-2-22
    Statins are known to reduce cardiovascular morbidity and mortality in primary and secondary prevention studies. Subsequently, a number of nonrandomised studies have shown statins improve clinical outcomes in patients with heart failure (HF). Small randomised controlled trials (RCT) also show improved cardiac function, reduced inflammation and mortality with statins in HF. However, the findings of two large RCTs do not support the evidence provided by previous studies and suggest statins lack beneficial effects in HF. Two meta-analyses have shown statins do not improve survival, whereas two others showed improved cardiac function and reduced inflammation in HF. It appears lipophilic statins produce better survival and other outcome benefits compared to hydrophilic statins. But the two types have not been compared in direct comparison trials in HF.
    Matched MeSH terms: Heart/drug effects
  17. Islam MN, Jesmine K, Kong Sn Molh A, Hasnan J
    Leg Med (Tokyo), 2009 Apr;11 Suppl 1:S147-50.
    PMID: 19345131 DOI: 10.1016/j.legalmed.2009.02.035
    A small amount of Methamphetamine (MA) can produce behavioural changes such as euphoria, increased alertness, paranoia, decreased appetite and increased physical activity. In cardiovascular system, it can produce chest pain and hypertension which can result in cardiovascular collapse. In addition, MA causes accelerated heartbeat, elevated blood pressure. It can also cause irreversible damage to blood vessels in the brain. A number of sympathomimetic amines are capable of causing myocardial damage, but the cardio-toxic action of MA has been of particular interest since standardized dosage consistently produces myocardial lesions. As this drug is a choice of many teenagers and young adults, the damage to their health, as well as their future aspects could be greatly affected, therefore more evidence must be sought to convince them the negative root and show them the optimism of recovery and salvation. To clarify the effect of Methamphetamine (MA) on myocardium, 56 male Wister rats aged four weeks were divided equally into MA, Methamphetamine withdrawal (MW), Placebo (P) and Control (C) group were examined following daily intra-peritoneal administration of MA at a dose of 5 mg/kg body weight for 2, 4, 8 and 12 weeks. Normal saline was similarly injected in P group. Light microscopic changes was seen in the myocardium of MA treated group including eosinophilic degeneration, atrophy, hypertrophy, disarray, edema, cellular infiltration, myolysis, granulation tissue, fibrosis and vacuolization. On the other hand, the withdrawal group showed evidence of gradual recovery of those myocardial changes. Optimism is therefore generated about possibility of returning towards normal by withdrawing of this drug by the addicts.
    Matched MeSH terms: Heart/drug effects*
  18. Garg M, Khanna D, Kalra S, Balakumar P
    Fundam Clin Pharmacol, 2016 Oct;30(5):394-405.
    PMID: 27148865 DOI: 10.1111/fcp.12204
    Fenofibrate and rosuvastatin at low doses might have experimental pleiotropic benefits. This study investigated the combined effect of low doses of fenofibrate and rosuvastatin in isoproterenol-induced experimental myocardial infarction. Rats administered isoproterenol (85 mg/kg/day, s.c.) for 2 days (day 29 and day 30) of 30 days experimental protocol developed significant myocardial infarction that was accompanied with high myocardial oxidative stress and lipid peroxidation, elevated serum markers of cardiac injury, lipid abnormalities, and elevated circulatory levels of C-reactive protein. Pretreatment with low doses of fenofibrate (30 mg/kg/day p.o., 30 days) and rosuvastatin (2 mg/kg/day p.o., 30 days) both alone or in combination markedly prevented isoproterenol-induced myocardial infarction and associated abnormalities while the low-dose combination of fenofibrate and rosuvastatin was more effective. Histopathological study in isoproterenol control rat heart showed necrosis with edema and acute inflammation at the margins of necrotic area. The rat heart from low-dose fenofibrate and rosuvastatin pretreated group showed scanty inflammation and no ischemia. In conclusion, fenofibrate and rosuvastatin pretreatment in low doses might have a therapeutic potential to prevent the pathogenesis of myocardial infarction. Moreover, their combined treatment option might offer superior therapeutic benefits via a marked reduction in myocardial infarct size and oxidative stress, suggesting a possibility of their pleiotropic cardioprotective action at low doses.
    Matched MeSH terms: Heart/drug effects
  19. Kuah KB
    Med J Malaysia, 1974 Mar;28(3):187-90.
    PMID: 4278020
    Matched MeSH terms: Fetal Heart/drug effects
  20. Aziz NF, Ramalingam A, Latip J, Zainalabidin S
    Life Sci, 2021 Mar 15;269:119080.
    PMID: 33465387 DOI: 10.1016/j.lfs.2021.119080
    S-Allylcysteine (SAC) is an extensively studied natural product which has been proven to confer cardioprotection. This potentiates SAC into many clinical relevance possibilities, hence, the use of it ought to be optimally elucidated. To further confirm this, an ischemia/reperfusion model has been used to determine SAC at 10 mM and 50 mM on cardiac function, cardiac marker, and mitochondrial permeability. Using Langendorff setup, 24 adult male Wistar rats' hearts were isolated to be perfused with Kreb-Henseleit buffer throughout the ischemia/reperfusion method. After 20 min of stabilization, global ischemia was induced by turning off the perfusion for 35 min followed by 60 min of reperfusion with either Kreb-Henseleit buffer or SAC with the dose of 10 mM or 50 mM. The cardiac function was assessed and coronary effluent was collected at different timepoints throughout the experiment for lactate dehydrogenase (LDH) measurement. The harvested hearts were then used to measure glutathione while isolated mitochondria for mPTP analysis. SAC-reperfused hearts were shown to prevent the aggravation of cardiac function after I/R induction. It also dose-dependently upregulated glutathione reductase and glutathione level and these were also accompanied by significant reduction of LDH leakage and preserved mitochondrial permeability. Altogether, SAC dose-dependently was able to recover the post-ischemic cardiac function deterioration alongside with improvement of glutathione metabolism and mitochondrial preservation. These findings highly suggest that SAC when sufficiently supplied to the heart would be able to prevent the deleterious complications after the ischemic insult.
    Matched MeSH terms: Heart/drug effects*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links