Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Samavati A, Othaman Z, Ghoshal SK, Dousti MR, Kadir MR
    Int J Mol Sci, 2012;13(10):12880-9.
    PMID: 23202927 DOI: 10.3390/ijms131012880
    The visible luminescence from Ge nanoparticles and nanocrystallites has generated interest due to the feasibility of tuning band gap by controlling the sizes. Germanium (Ge) quantum dots (QDs) with average diameter ~16 to 8 nm are synthesized by radio frequency magnetron sputtering under different growth conditions. These QDs with narrow size distribution and high density, characterized using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) are obtained under the optimal growth conditions of 400 °C substrate temperature, 100 W radio frequency powers and 10 Sccm Argon flow. The possibility of surface passivation and configuration of these dots are confirmed by elemental energy dispersive X-ray (EDX) analysis. The room temperature strong visible photoluminescence (PL) from such QDs suggests their potential application in optoelectronics. The sample grown at 400 °C in particular, shows three PL peaks at around ~2.95 eV, 3.34 eV and 4.36 eV attributed to the interaction between Ge, GeO(x) manifesting the possibility of the formation of core-shell structures. A red shift of ~0.11 eV in the PL peak is observed with decreasing substrate temperature. We assert that our easy and economic method is suitable for the large-scale production of Ge QDs useful in optoelectronic devices.
    Matched MeSH terms: Germanium/chemistry*
  2. Rais NNM, Bradley DA, Hashim A, Osman ND, Noor NM
    Appl Radiat Isot, 2019 Nov;153:108810.
    PMID: 31351374 DOI: 10.1016/j.apradiso.2019.108810
    For a range of doses familiarly incurred in computed tomography (CT), study is made of the performance of Germanium (Ge)-doped fibre dosimeters formed into cylindrical and flat shapes. Indigenously fabricated 2.3 mol% and 6 mol% Ge-dopant concentration preforms have been used to produce flat- and cylindrical-fibres (FF and CF) of various size and diameters; an additional 4 mol% Ge-doped commercial fibre with a core diameter of 50 μm has also been used. The key characteristics examined include the linearity index f(d), dose sensitivity and minimum detectable dose (MDD), the performance of the fibres being compared against that of lithium-fluoride based TLD-100 thermoluminescence (TL) dosimeters. For doses in the range 2-40 milligray (mGy), delivered at constant potential of 120 kilovoltage (kV), both the fabricated and commercial fibres demonstrate supralinear behaviours at doses  4 mGy. In terms of dose sensitivity, all of the fibres show superior TL sensitivity when compared against TLD-100, the 2.3 mol% and 6 mol% Ge-doped FF demonstrating the greatest TL sensitivity at 84 and 87 times that of TLD-100. The TL yields for the novel Ge-doped silica glass render them appealing for use within the present medical imaging dose range, offering linearity at high sensitivity down to less than 2 mGy.
    Matched MeSH terms: Germanium/chemistry*
  3. Begum M, Rahman AKMM, Abdul-Rashid HA, Yusoff Z, Mat Nawi SN, Khandaker MU, et al.
    Appl Radiat Isot, 2021 Aug;174:109771.
    PMID: 34048992 DOI: 10.1016/j.apradiso.2021.109771
    Present study concerns the key thermoluminescence (TL) properties of photonic crystal fibres (PCFs), seeking development of alternatively structured TL materials that are able to offer a advantages over existing passive dosimeters. In terms of their internal structure and light guiding properties the PCFs, collapsed and structured, differ significantly from that of conventional optical fibres. To investigate the dosimetric parameters of the PCFs use was made of a linear accelerator producing a 6 MV photon beam, delivering doses ranging from 0.5 Gy to 8 Gy. The parameters studied included TL response, linearity index, glow curves, relative sensitivity and TL signal fading, the results being compared against those obtained using TLD-100 chips. At 4 Gy photon dose the Ge-doped collapsed PCFs were found to provide a response 27 × that of structured PCF, also giving a TL yield similar to that of standard TLD-100 chips. Over post-irradiation periods of 15 and 30 days collapsed PCF TL signal fading were 8% and 17% respectively, with corresponding values of 37% and 64% for the structured PCF. Trapping parameters including the order of kinetics (b), activation energy (E) and frequency factor (s-1) were assessed with Chen's peak shape method. Lifetime of trapping centre was found to be (2.36 E+03) s and (9.03 E +01) s regarding the collapsed and structured PCF respectively with 6 Gy of photon beam. For the Ge-doped collapsed PCF, the high TL yield, sensitivity and low fading provide the basis of a highly promising system of TLD for radiotherapy applications.
    Matched MeSH terms: Germanium/chemistry
  4. Yii MW, Zaharudin A, Norfaizal M
    Appl Radiat Isot, 2007 Dec;65(12):1389-95.
    PMID: 17697782
    The concentrations of 137Cs and 134Cs in Malaysian marine sediments were measured by gamma-ray spectrometry with a high-purity germanium (HPGe) detector connected to a multichannel analyzer. In general, the 137Cs concentration in Malaysian marine sediments has been found to be very low and less than 5 Bq/kg dry weight with the exception of those from a few sampling locations. The concentration of 134Cs was found to be less than the minimum detectable activity for the measuring condition used. Data reported in this paper were found to be comparable with results from within the region and thus can be used as reference data for the country.
    Matched MeSH terms: Germanium
  5. Phuah CS, Che Abd Rahim Mohamed, Zaharuddin Ahmad
    Concentration of Ra-226 and Ra-228 activities in water and sediment samples were measured using the Liquid Scintillation Counter (LSC) and High Purity Germanium Gamma Spectrometry (HPGe). respectively. Concentrations of Ra-226 activity in sediment samples range from 18.93 Bg/ kg to 236.06 Bq/kg and for Ra-228 activity range from 12.59 Bg/kg to 410.60 Bq/kg. Meanwhile, concentrations of Ra-226 activity obtained in water samples range from 0.064 Bg/L to 0.199 Bq/L. These data indicate, that the distribution of Ra-228 and Ra-226 in the study area were varied from one sampling stations to another and is probably related to the contents of suspended particles.
    Penentuan kepekatan aktiviti Ra-226 dan Ra-228 dalam sampel air dan sedimen dilakukan masing-masing dengan Pembilang Sintilasi Cecair (LSC) dan Spektrometri Gamma Germanium Lampau Tulen (HPGe). Kepekatan aktiviti Ra-226 dalam sampel sedimen adalah berjulat dari 18.93 Bg/kg hingga 236.06 Bq/kg dan kepekatan aktiviti Ra-228 berjulat dari 12.59 Bg/kg hingga 410.60 Bq/kg. Kepekatan aktiviti Ra-226 dalam sampel air yang diperolehi pula berjulat dari 0.064 Bg/L hingga 0.199 Bq/L. Ini menunjukkan taburan Ra-228 dan Ra-226 di kawasan kajian adalah berubah mengikut lokasi kajian dan berkemungkinan dipengaruhi oleh sifat kandungan bahan terampai.
    Matched MeSH terms: Germanium
  6. Bahari HR, Sidek HA, Adikan FR, Yunus WM, Halimah MK
    Int J Mol Sci, 2012;13(7):8609-14.
    PMID: 22942723 DOI: 10.3390/ijms13078609
    Heavy metal oxide glasses, containing bismuth and/or lead in their glass structure are new alternatives for rare eart (RE) doped hosts. Hence, the study of the structure of these vitreous systems is of great interest for science and technology. In this research work, GeO(2)-PbO-Bi(2)O(3) glass host doped with Er(3+)/Yb(3+) ions was synthesized by a conventional melt quenching method. The Fourier transform infrared (FTIR) results showed that PbO and Bi(2)O(3) participate with PbO(4) tetragonal pyramids and strongly distort BiO(6) octahedral units in the glass network, which subsequently act as modifiers in glass structure. These results also confirmed the existence of both four and six coordination of germanium oxide in glass matrix.
    Matched MeSH terms: Germanium/chemistry*
  7. Yaakob NH, Wagiran H, Hossain MI, Ramli AT, Bradley DA, Ali H
    Appl Radiat Isot, 2011 Sep;69(9):1189-92.
    PMID: 21507665 DOI: 10.1016/j.apradiso.2011.03.039
    We have investigated the thermoluminescent response and fading characteristics of germanium- and aluminium-doped SiO(2) optical fibres. These optical fibres were placed in a solid phantom and irradiated using 6 and 10 MV photon beams at doses ranging from 0.02 to 0.24 Gy delivered using a linear accelerator. In fading studies, the TL measurements were continued up to 14 days post-irradation. We have investigated the linearity of TL response as a function of dose for Ge-, Al-doped optical fibre and TLD-100 obtained for 6 and 10 MV photon irradiations. We have concentrated on doses that represent a small fraction of that delivered to the tumour to establish sensitivity of measurement for peripheral exposures in external beam radiotherapy.
    Matched MeSH terms: Germanium/chemistry*
  8. Rosli AN, Zabidi NA, Kassim HA, Shrivastava KN
    PMID: 21571582 DOI: 10.1016/j.saa.2011.04.051
    We have calculated the vibrational frequencies of clusters of atoms from the first principles by using the density-functional theory in the local density approximation (LDA). We are also able to calculate the electronic binding energy for all of the clusters of atoms from the optimized structure. We have made clusters of BanOm (n, m=1-6) and have determined the bond lengths, vibrational frequencies as well as intensities in each case. We find that the peroxide cluster BaO2 occurs with the O-O vibrational frequency of 836.3 cm(-1). We also find that a glass network occurs in the material which explains the vibrational frequency of 67 cm(-1). The calculated values agree with those measured from the Raman spectra of barium peroxide and Ba-B-oxide glass. We have calculated the vibrational frequencies of BaO4, GeO4 and SiO4 each in tetrahedral configuration and find that the vibrational frequencies in these systems depend on the inverse square root of the atomic mass.
    Matched MeSH terms: Germanium/chemistry*
  9. Nawi SN, Wahib NF, Zulkepely NN, Amin YB, Min UN, Bradley DA, et al.
    Sensors (Basel), 2015;15(8):20557-69.
    PMID: 26307987 DOI: 10.3390/s150820557
    Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a (60)Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium.
    Matched MeSH terms: Germanium/chemistry*
  10. Mat Nawi SN, Abdul Sani SF, Khandaker MU, Ung NM, Almugren KS, Alkallas FH, et al.
    PLoS One, 2020;15(7):e0235053.
    PMID: 32673337 DOI: 10.1371/journal.pone.0235053
    Study has been made of the thermoluminescence yield of various novel tailor-made silica fibres, 6 and 8 mol % Ge-doped, with four differing outer dimensions, comprised of flat and cylindrical shapes, subjected to electron irradiation. Main thermoluminescence dosimetric characteristics have been investigated, including the glow curve, dose response, energy dependence, minimum detectable dose, effective atomic number, linearity of index and sensitivity of the fibres. The studies have also established the uncertainties involved as well as the stability of response in terms of fading effect, reproducibility and annealing. In addition, dose-rate dependence was accounted for as this has the potential to be a significant factor in radiotherapy applications. The 6 and 8 mol % fibres have been found to provide highly linear dose response within the range 1 to 4 Gy, the smallest size flat fibre, 6 mol% Ge-doped, showing the greatest response by a factor of 1.1 with respect to the highly popular LiF phosphor-based medium TLD100. All of the fibres also showed excellent reproducibility with a standard deviation of < 2% and < 4% for 6 and 8 mol % Ge-doped fibres respectively. For fading evaluation, the smallest 6 mol% Ge-doped dimension flat fibre, i.e., 85 × 270 μm displayed the lowest signal loss within 120 days post-irradiation, at around 26.9% also showing a response superior to that of all of the other fibres. Moreover, all the fibres and TLD-100 chips showed independence with respect to electron irradiation energy and dose-rate. Compared with the 8 mol% Ge-doped optical fibres, the 6 mol% Ge-doped flat optical fibres have been demonstrated to possess more desirable performance features for passive dosimetry, serving as a suitable alternative to TLD-100 for medical irradiation treatment applications.
    Matched MeSH terms: Germanium*
  11. Masitah Alias, Zaini Hamzah, Ahmad Saat, Muhamat Omar, Zakaria Tajuddin, W. Mohamad W.A. Kadir, et al.
    MyJurnal
    The existence of Naturally Occurring Radioactive Materials (NORM) such as K-40 was studied all over the world for their characteristics and effects on human and environment. K-40 exist in the earth crust with the concentration about 1.8 mg/kg or 481 Bq/g.. In this study, the level of K-40 in soil samples were measured using gamma spectrometer equipped with hyper pure germanium detector. The samples were collected from an oil palm cultivated area of Jengka 15, in Maran District, Pahang. The results show the level of K-40 activities at various locations. The activities of K-40 are in the range 52.9-150.5 Bq/kg and total potassium concentrations are 1.60-4.50%. There are no correlation between activities of K-40 with elevation i.e. R2= 0.0885.
    Matched MeSH terms: Germanium
  12. Nadarajah K, Khan AF, Rahim NA
    Recent Pat Nanotechnol, 2016;10(1):26-43.
    PMID: 27018271
    BACKGROUND: Germanium (Ge) nanostructures exhibit wide range of potential applications in the field of nanoscale devices due to their excellent optical and electrical properties and have gained significant interest due to the Bohr exciton radius. Bohr radius of Ge (24.3 nm) is larger than that of Si (4.9 nm), leading to quantum size effects and nanostructures with controllable bandgaps.

    METHODS: This article provides a comprehensive review on various electrolytes for electrodeposition procedures developed to obtain the Ge nanostructures of desired structure, diameter, and density. We discuss the growth mechanisms and influence of different parameters such as type of solution, concentration, and value of applied potential or current density.

    RESULTS: The ionic liquids can be used for the development of Ge nanostructures and provide extensive electrochemical windows for electrodeposition. The obtained SixGe1-x structures also exhibited strong color change (from red to blue) at room temperature during the electrodeposition, which is likely to be due to a quantum size effect.

    CONCLUSION: The main advantages of the ionic liquids are 'it does not decompose', easy to purify and dry. Moreover, it exhibits fairly extensive electrochemical windows greater than 5 V for electrodeposition. Electrodeposition of SixGe1-x nanostructures from ionic liquids is quite a favorable process. The 3DOM Ge electrode is a promising material for nextgeneration lithium ion battery because of its high irreversible specific capacity. Few relevant patents to the topic have been reviewed and cited.

    Matched MeSH terms: Germanium
  13. Abdulla YA, Amin YM, Khoo HB
    J Radiol Prot, 2002 Dec;22(4):417-21.
    PMID: 12546228
    Percentage depth doses for 6 and 10 MV x-ray beams from a linear accelerator were measured using approximately 1 cm long (approximately 0.3 mg) Ge-doped optical fibre as a thermoluminescence dosimeter for two field sizes, 5 x 5 and 10 x 10 cm2. The results indicate that the Ge-doped optical fibre dosimeter is in good agreement with the results from a PTW 30001 cylindrical ionisation chamber and TLD-100. For 6 MV x-ray beams we observe that the depth of maximum dose d(max) is 1.5 and 2 cm for field sizes of 5 x 5 and 10 x 10 cm2 respectively. For 10 MV d(max) is 2 cm for a field size of 5 x 5 cm2 and 2.5 cm for a 10 x 10 cm2 field.
    Matched MeSH terms: Germanium
  14. Leong CL
    Talanta, 1971 Aug;18(8):845-8.
    PMID: 18960953
    A ternary complex between germanium, Catechol Violet (CV) and cetyltrimethylanunoniuni bromide is proposed for the determination of germanium. The stoichiometric ratio Ge:CV is 1:2. Beer's law is obeyed from 0.1 to 1.0 ppm of Ge. The method is highly selective. Interference from Sn(IV), Fe(III), Bi(III), Cr(VI), Mo(VI), V(V) and Sb(III) in mg amounts is eliminated by extracting the germanium into carbon tetrachloride from 9M HC1 and then stripping into water before the photometric determination.
    Matched MeSH terms: Germanium
  15. Md Fakarudin Ab Rahman, M. Iqbal Saripan, Nor Pa’iza Mohamad Hasan, Ismail Mustapha
    MyJurnal
    The total mass attenuation coefficients (μ/ρ) of stainless steel (SS316L) and carbon steel (A516) that are widely used as petrochemical plant components, such as distillation column, heat exchanger, boiler and storage tank were measured at 662, 1073 and 1332 keV of photon energies. Measurements of radiation intensity for various thicknesses of steel were made by using transmission method. The γ-ray intensity were counted by using a Gamma spectrometer that contains a Hyper-pure Germanium (HPGe) detector connected with Multi Channel Analyzer (MCA). The effective numbers of atomic (Zeff) and electron (Neff) obtained experimentally were compared by those obtained through theoretical calculation. Both experimental and calculated values of Zeff and Neff were in good agreement.
    Matched MeSH terms: Germanium
  16. Abidin MSZ, Matsumura R, Anisuzzaman M, Park JH, Muta S, Mahmood MR, et al.
    Materials (Basel), 2013 Nov 06;6(11):5047-5057.
    PMID: 28788375 DOI: 10.3390/ma6115047
    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm(-1) corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm(-1) corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.
    Matched MeSH terms: Germanium
  17. Rais NNM, Bradley DA, Hashim A, Isa NM, Osman ND, Ismail I, et al.
    J Radiol Prot, 2019 Sep;39(3):N8-N18.
    PMID: 31018196 DOI: 10.1088/1361-6498/ab1c16
    Novel germanium (Ge)-doped silica glass fibres tailor-made in Malaysia are fast gaining recognition as potential media for thermoluminescence (TL) dosimetry, with active research ongoing into exploitation of their various beneficial characteristics. Investigation is made herein of the capability of these media for use in diagnostic imaging dosimetry, specifically at the radiation dose levels typically obtained in conduct of Computed Tomography (CT). As a first step within such efforts, there is need to investigate the performance of the fibres using tightly defined spectra, use being made of a Philips constant potential industrial x-ray facility, Model MG165, located at the Malaysian Nuclear Agency Secondary Standards Dosimetry Lab (SSDL). Standard radiation beam qualities (termed RQT) have been established for CT, in accord with IEC 61267: 2003 and IAEA Technical Reports Series No. 457: 2007. A calibrated ionisation chamber has also been utilised, forming a component part of the SSDL equipment. The fabricated fibres used in this study are 2.3 mol% flat fibre (FF) of dimensions 643 × 356 μm2 and 2.3 mol% cylindrical fibre (CF) of 481 μm diameter, while the commercial fibre used is 4 mol% with core diameter of 50 μm. The dopant concentrations are nominal preform values. The fibres have been irradiated to doses of 20, 30 and 40 milligray (mGy) for each of the beam qualities RQT 8, RQT 9 and RQT 10. For x-rays generated at constant potential values from 100 to 150 kV, a discernible energy-dependent response is seen, comparisons being made with that of lithium fluoride (LiF) thermoluminescence dosimeters (TLD-100). TL yield versus dose has also been investigated for x-ray doses from 2 to 40 mGy, all exhibiting linearity. Compared to TLD-100, greater sensitivity is observed for the fibres.
    Matched MeSH terms: Germanium/chemistry*
  18. Rozaila ZS, Khandaker MU, Abdul Sani SF, Sabtu SN, Amin YM, Maah MJ, et al.
    J Radiol Prot, 2017 Sep 25;37(3):761-779.
    PMID: 28581438 DOI: 10.1088/1361-6498/aa770e
    The sensitivity of a novel silica-based fibre-form thermoluminescence dosimeter was tested off-site of a rare-earths processing plant, investigating the potential for obtaining baseline measurements of naturally occurring radioactive materials. The dosimeter, a Ge-doped collapsed photonic crystal fibre (PCFc) co-doped with B, was calibrated against commercially available thermoluminescent dosimetry (TLD) (TLD-200 and TLD-100) using a bremsstrahlung (tube-based) x-ray source. Eight sampling sites within 1 to 20 km of the perimeter of the rare-earth facility were identified, the TLDs (silica- as well as TLD-200 and TLD-100) in each case being buried within the soil at fixed depth, allowing measurements to be obtained, in this case for protracted periods of exposure of between two to eight months. The values of the dose were then compared against values projected on the basis of radioactivity measurements of the associated soils, obtained via high-purity germanium gamma-ray spectrometry. Accord was found in relative terms between the TL evaluations at each site and the associated spectroscopic results. Thus said, in absolute terms, the TL evaluated doses were typically less than those derived from gamma-ray spectroscopy, by ∼50% in the case of PCFc-Ge. Gamma spectrometry analysis typically provided an upper limit to the projected dose, and the Marinelli beaker contents were formed from sieving to provide a homogenous well-packed medium. However, with the radioactivity per unit mass typically greater for smaller particles, with preferential adsorption on the surface and the surface area per unit volume increasing with decrease in radius, this made for an elevated dose estimate. Prevailing concentrations of key naturally occurring radionuclides in soil,226Ra,232Th and40K, were also determined, together with radiological dose evaluation. To date, the area under investigation, although including a rare-earth processing facility, gives no cause for concern from radiological impact. The current study reveals the suitability of the optical fibre based micro-dosimeter for all-weather monitoring of low-level environmental radioactivity.
    Matched MeSH terms: Germanium/chemistry
  19. Alyahyawi A, Jupp T, Alkhorayef M, Bradley DA
    Appl Radiat Isot, 2018 Aug;138:45-49.
    PMID: 28780202 DOI: 10.1016/j.apradiso.2017.07.011
    In the modern clinical practice of diagnostic radiology there is a growing demand for radiation dosimetry, it also being recognized that with increasing use of X-ray examinations additional population dose will result, accompanied by an additional albeit low potential for genetic consequences. At the doses typical of diagnostic radiology there is also a low statistical risk for cancer induction; in adhering to best practice, to be also implied is a low but non-negligible potential for deterministic sensitive organ responses, including in regard to the skin and eyes. Risk reduction is important, in line with the principle of ALARP, both in regard to staff and patients alike; for the latter modern practice is usually guided by Dose Reference Levels (DRL) while for the former and members of the public, legislated controls (supported by safe working practices) pertain. As such, effective, reliable and accurate means of dosimetry are required in support of these actions. Recent studies have shown that Ge-doped-silica glass fibres offer several advantages over the well-established phosphor-based TL dosimeters (TLD), including excellent sensitivity at diagnostic doses as demonstrated herein, low fading, good reproducibility and re-usability, as well as representing a water impervious, robust dosimetric system. In addition, these silica-based fibres show good linearity over a wide dynamic range of dose and dose-rate and are directionally independent. In the present study, we investigate tailor made doped-silica glass thermoluminescence (TL) for applications in medical diagnostic imaging dosimetry. The aim is to develop a dosimeter of sensitivity greater than that of the commonly used LiF (Mg,Ti) phosphor. We examine the ability of such doped glass media to detect the typically low levels of radiation in diagnostic applications (from fractions of a mGy through to several mGy or more), including, mammography and dental radiology, use being made of x-ray tubes located at the Royal Surrey County Hospital. We further examine dose-linearity, energy response and fading.
    Matched MeSH terms: Germanium*
  20. Kumar A, Jain A, Sayyed MI, Laariedh F, Mahmoud KA, Nebhen J, et al.
    Sci Rep, 2021 Apr 08;11(1):7784.
    PMID: 33833308 DOI: 10.1038/s41598-021-87256-1
    Nuclear radiation shielding capabilities for a glass series 20Bi2O3 - xPbO - (80 - 2x)B2O3 - xGeO2 (where x = 5, 10, 20, and 30 mol%) have been investigated using the Phy-X/PSD software and Monte Carlo N-Particle transport code. The mass attenuation coefficients (μm) of selected samples have been estimated through XCOM dependent Phy-X/PSD program and MCNP-5 code in the photon-energy range 0.015-15 MeV. So obtained μm values are used to calculate other γ-ray shielding parameters such as half-value layer (HVL), mean-free-path (MFP), etc. The calculated μm values were found to be 71.20 cm2/g, 76.03 cm2/g, 84.24 cm2/g, and 90.94 cm2/g for four glasses S1 to S4, respectively. The effective atomic number (Zeff)values vary between 69.87 and 17.11 for S1 or 75.66 and 29.11 for S4 over 0.05-15 MeV of photon-energy. Sample S4, which has a larger PbO/GeO2 of 30 mol% in the bismuth-borate glass, possesses the lowest MFP and HVL, providing higher radiation protection efficiency compared to all other combinations. It shows outperformance while compared the calculated parameters (HVL and MFP) with the commercial shielding glasses, different alloys, polymers, standard shielding concretes, and ceramics. Geometric Progression (G-P) was applied for evaluating the energy absorption and exposure buildup factors at energies 0.015-15 MeV with penetration depths up to 40 mfp. The buildup factors showed dependence on the MFP and photon-energy as well. The studied samples' neutron shielding behavior was also evaluated by calculating the fast neutron removal cross-section (ΣR), i.e. found to be 0.139 cm-1 for S1, 0.133 cm-1 for S2, 0.128 cm-1 for S3, and 0.12 cm-1 for S4. The results reveal a great potential for using a glass composite sample S4 in radiation protection applications.
    Matched MeSH terms: Germanium
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links