Displaying all 9 publications

Abstract:
Sort:
  1. Rajagopal BS, Yates N, Smith J, Paradisi A, Tétard-Jones C, Willats WGT, et al.
    IUCrJ, 2024 Mar 01;11(Pt 2):260-274.
    PMID: 38446458 DOI: 10.1107/S2052252524001386
    The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.
    Matched MeSH terms: Gammaproteobacteria*
  2. Sam KK, Lau NS, Furusawa G, Amirul AA
    Genome Announc, 2017 Oct 19;5(42).
    PMID: 29051257 DOI: 10.1128/genomeA.01147-17
    Hahella sp. strain CCB-MM4 is a halophilic bacterium isolated from estuarine mangrove sediment. The genome sequence of Hahella sp. CCB-MM4 provides insights into exopolysaccharide biosynthesis and the lifestyle of the bacterium thriving in a saline mangrove environment.
    Matched MeSH terms: Gammaproteobacteria
  3. Diyana T, Furusawa G
    J Basic Microbiol, 2021 Dec;61(12):1124-1132.
    PMID: 34796964 DOI: 10.1002/jobm.202100198
    Sulfur is one of the common and essential elements of all life. Sulfate, which is a major source of sulfur, plays an important role in synthesizing sulfur-containing amino acids, such as cysteine and methionine, organic compounds essential to all living organisms. Some investigations reported that the assimilatory sulfate reduction pathway (ASRP) involved in cysteine synthesis is crucial to entering bacterial dormancy in pathogens. Our previous investigation reported that the halophilic marine bacterium, Microbulbifer aggregans CCB-MM1T , possesses an ASRP and the dissimilatory sulfate reduction pathway (DSRP). The bacterium might use DSRP to generate energy required for entering its dormant. However, the role of the ASRP in the dormancy of M. aggregans CCB-MM1T was so far unknown. In this study, we found that genes involved in ASRP were downregulated in the dormancy. The disruption of the gene encoding an assimilatory sulfite reductase, cysI, suppressed a completely dormant state under low nutrient conditions. In addition, the cysI mutant showed cell aggregation at the middle-exponential phase under high nutrient conditions, indicating that the mutation might be stimulated to enter the dormancy. The wild-type phenotype of the bacterium was recovered by the addition of cysteine. These results suggested that cysteine concentration may play an important role in inducing the dormancy of M. aggregans.
    Matched MeSH terms: Gammaproteobacteria*
  4. Jong BC, Liew PW, Lebai Juri M, Kim BH, Mohd Dzomir AZ, Leo KW, et al.
    Lett Appl Microbiol, 2011 Dec;53(6):660-7.
    PMID: 21967346 DOI: 10.1111/j.1472-765X.2011.03159.x
    To evaluate the bioenergy generation and the microbial community structure from palm oil mill effluent using microbial fuel cell.
    Matched MeSH terms: Gammaproteobacteria/genetics; Gammaproteobacteria/isolation & purification; Gammaproteobacteria/metabolism
  5. Goh CBS, Wong LW, Parimannan S, Rajandas H, Loke S, Croft L, et al.
    Int J Syst Evol Microbiol, 2020 Dec;70(12):6355-6363.
    PMID: 33146596 DOI: 10.1099/ijsem.0.004539
    A Gram-negative, filamentous aerobic bacterium designated as strain Mgbs1T was isolated on 12 April 2017 from the subsurface soil and leaf litter substrate at the base of a Koompassia malaccensis tree in a tropical peat swamp forest in the northern regions of the state of Selangor, Malaysia (3° 39' 04.7' N 101° 17' 43.7'' E). Phylogenetic analyses based on the full 16S rRNA sequence revealed that strain Mgbs1T belongs to the genus Chitinophaga with the greatest sequence similarity to Chitinophaga terrae KP01T (97.65 %), Chitinophaga jiangningensis DSM27406T (97.58 %), and Chitinophaga dinghuensis DHOC24T (97.17 %). The major fatty acids of strain Mgbs1T (>10 %) are iso-C15 : 0, C16 : 1 ω5c and iso-C17 : 0 3-OH while the predominant respiratory quinone is menaquinone-7. Strain Mgbs1T has a complete genome size of 8.03 Mb, with a G+C content of 48.5 mol%. The DNA-DNA hybridization (DDH) score between strain Mgbs1T and C. jiangningensis DSM27406T was 15.9 %, while in silico DDH values of strain Mgbs1T against C. dinghuensis DHOC24T and C. terrae KP01T were 20.0 and 19.10% respectively. Concurrently, Average Nucleotide Identity (ANI) scores between strain Mgbs1T against all three reference strains are 73.2 %. Based on the phenotypic, chemotaxonomic, and phylogenetic consensus, strain Mgbs1T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga extrema sp. nov. is proposed (=DSM 108835T=JCM 33276T).
    Matched MeSH terms: Gammaproteobacteria/classification*; Gammaproteobacteria/isolation & purification
  6. Lau SC, Zhang R, Brodie EL, Piceno YM, Andersen G, Liu WT
    FEMS Microbiol Ecol, 2013 May;84(2):259-69.
    PMID: 23237658 DOI: 10.1111/1574-6941.12057
    Knowledge about the biogeography of marine bacterioplankton on the global scale in general and in Southeast Asia in particular has been scarce. This study investigated the biogeography of bacterioplankton community in Singapore seawaters. Twelve stations around Singapore island were sampled on different schedules over 1 year. Using PCR-DNA fingerprinting, DNA cloning and sequencing, and microarray hybridization of the 16S rRNA genes, we observed clear spatial variations of bacterioplankton diversity within the small area of the Singapore seas. Water samples collected from the Singapore Strait (south) throughout the year were dominated by DNA sequences affiliated with Cyanobacteria and Alphaproteobacteria that were believed to be associated with the influx of water from the open seas in Southeast Asia. On the contrary, water in the relatively polluted Johor Strait (north) were dominated by Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes and that were presumably associated with river discharge and the relatively eutrophic conditions of the waterway. Bacterioplankton diversity was temporally stable, except for the episodic surge of Pseudoalteromonas, associated with algal blooms. Overall, these results provide valuable insights into the diversity of bacterioplankton communities in Singapore seas and the possible influences of hydrological conditions and anthropogenic activities on the dynamics of the communities.
    Matched MeSH terms: Gammaproteobacteria/genetics; Gammaproteobacteria/isolation & purification
  7. Fu X, Norbäck D, Yuan Q, Li Y, Zhu X, Hashim JH, et al.
    Sci Total Environ, 2021 Jan 20;753:141904.
    PMID: 32890872 DOI: 10.1016/j.scitotenv.2020.141904
    Sick building syndrome (SBS) is a collection of nonspecific syndromes linked with the built environment. The occurrence of SBS is associated with humidity, ventilation, moulds and microbial compounds exposure. However, no study has reported the association between indoor microbiome and SBS. In this study, 308 students were surveyed for SBS symptoms from 21 classrooms of 7 junior high schools from Johor Bahru, Malaysia, and vacuum dust from floor, desks and chairs was collected. High throughput amplicon sequencing (16S rRNA gene and ITS region) and quantitative PCR were conducted to characterize the absolute concentration of bacteria and fungi taxa. In total, 326 bacterial and 255 fungal genera were detected in dust with large compositional variation among classrooms. Also, half of these samples showed low compositional similarity to microbiome data deposited in the public database. The number of observed OTUs in Gammaproteobacteria was positively associated with SBS (p = 0.004). Eight microbial genera were associated with SBS (p 
    Matched MeSH terms: Gammaproteobacteria
  8. Jamek SB, Nyffenegger C, Muschiol J, Holck J, Meyer AS, Mikkelsen JD
    Appl Microbiol Biotechnol, 2017 Jun;101(11):4533-4546.
    PMID: 28280871 DOI: 10.1007/s00253-017-8198-4
    Type A chitinases (EC 3.2.1.14), GH family 18, attack chitin ((1 → 4)-2-acetamido-2-deoxy-β-D-glucan) and chito-oligosaccharides from the reducing end to catalyze release of chitobiose (N,N'-diacetylchitobiose) via hydrolytic cleavage of N-acetyl-β-D-glucosaminide (1 → 4)-β-linkages and are thus "exo-chitobiose hydrolases." In this study, the chitinase type A from Serratia marcescens (SmaChiA) was used as a template for identifying two novel exo-chitobiose hydrolase type A enzymes, FbalChi18A and MvarChi18A, originating from the marine organisms Ferrimonas balearica and Microbulbifer variabilis, respectively. Both FbalChi18A and MvarChi18A were recombinantly expressed in Escherichia coli and were confirmed to exert exo-chitobiose hydrolase activity on chito-oligosaccharides, but differed in temperature and pH activity response profiles. Amino acid sequence comparison of the catalytic β/α barrel domain of each of the new enzymes showed individual differences, but ~69% identity of each to that of SmaChiA and highly conserved active site residues. Superposition of a model substrate on 3D structural models of the catalytic domain of the enzymes corroborated exo-chitobiose hydrolase type A activity for FbalChi18A and MvarChi18A, i.e., substrate attack from the reducing end. A main feature of both of the new enzymes was the presence of C-terminal 5/12 type carbohydrate-binding modules (SmaChiA has no C-terminal carbohydrate binding module). These new enzymes may be useful tools for utilization of chitin as an N-acetylglucosamine donor substrate via chitobiose.
    Matched MeSH terms: Gammaproteobacteria/enzymology*
  9. Cheng-Yee Fish-Low, Chee HY, Ainon Hamzah
    Sains Malaysiana, 2015;44:1625-1633.
    Microbial communities of two oil reservoirs from Malaysia, denoted as Platform Bo and Platform Pe were studied using
    culture-independent approach. Environmental DNA was extracted and the universal amplified ribosomal region (UARR)
    was target amplified for both prokaryotes and eukaryotes. The amplified products were purified and cloned into pTZ57R/T
    vector to construct the 16S/18S rDNA library. Restriction endocucleases HhaI and MspI were used to screen the library.
    From that, 125 and 253 recombinant plasmid representative clones from Platform Bo and Platform Pe, respectively, were
    sent for DNA sequencing. Twenty-six operational taxonomic units (OTUs) consist of 20 genera detected at Platform Bo
    and 17 OTUs consist of 13 genera detected at Platform Pe. Marinobacter and Acinetobacter species co-occurred in both
    platforms whereas the rest are site-specific. Gammaproteobacteria accounted for 86.0% of the microbial community in
    Platform Bo, where OTUs affiliated to Marinobacter, Pseudomonas and Marinobacterium that were the most abundant. The
    major OTUs in the Platform Pe were with affinities to Achromobacter, followed by Stenotrophomonas and Serratia. The
    only archaeal isolates were detected in Platform Pe, which affiliated to Thermocladium. The singletons and doubletons
    accounted for about 50.0% of the OTU abundance in both platforms, which considerably significant despite their rare
    occurrence.
    Matched MeSH terms: Gammaproteobacteria
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links