Displaying all 9 publications

Abstract:
Sort:
  1. Hirano M, Takada Y, Wong CF, Yamaguchi K, Kotani H, Kurokawa T, et al.
    J Biol Chem, 2017 06 02;292(22):9365-9381.
    PMID: 28377503 DOI: 10.1074/jbc.M117.778829
    Voltage-dependent Ca2+ channels (VDCCs) mediate neurotransmitter release controlled by presynaptic proteins such as the scaffolding proteins Rab3-interacting molecules (RIMs). RIMs confer sustained activity and anchoring of synaptic vesicles to the VDCCs. Multiple sites on the VDCC α1 and β subunits have been reported to mediate the RIMs-VDCC interaction, but their significance is unclear. Because alternative splicing of exons 44 and 47 in the P/Q-type VDCC α1 subunit CaV2.1 gene generates major variants of the CaV2.1 C-terminal region, known for associating with presynaptic proteins, we focused here on the protein regions encoded by these two exons. Co-immunoprecipitation experiments indicated that the C-terminal domain (CTD) encoded by CaV2.1 exons 40-47 interacts with the α-RIMs, RIM1α and RIM2α, and this interaction was abolished by alternative splicing that deletes the protein regions encoded by exons 44 and 47. Electrophysiological characterization of VDCC currents revealed that the suppressive effect of RIM2α on voltage-dependent inactivation (VDI) was stronger than that of RIM1α for the CaV2.1 variant containing the region encoded by exons 44 and 47. Importantly, in the CaV2.1 variant in which exons 44 and 47 were deleted, strong RIM2α-mediated VDI suppression was attenuated to a level comparable with that of RIM1α-mediated VDI suppression, which was unaffected by the exclusion of exons 44 and 47. Studies of deletion mutants of the exon 47 region identified 17 amino acid residues on the C-terminal side of a polyglutamine stretch as being essential for the potentiated VDI suppression characteristic of RIM2α. These results suggest that the interactions of the CaV2.1 CTD with RIMs enable CaV2.1 proteins to distinguish α-RIM isoforms in VDI suppression of P/Q-type VDCC currents.
    Matched MeSH terms: GTP-Binding Proteins/genetics
  2. Razak SAA, Murad NAA, Masra F, Chong DLS, Abdullah N, Jalil N, et al.
    Curr Mol Med, 2018;18(5):295-305.
    PMID: 30289070 DOI: 10.2174/1566524018666181004121604
    BACKGROUND: The phenotypic severity of β-thalassemia is highly modulated by three genetic modifiers: β-globin (HBB) mutations, co-inheritance of α-thalassemia and polymorphisms in the genes associated with fetal haemoglobin (HbF) production. This study was aimed to evaluate the effect of HbF related polymorphisms mainly in the HBB cluster, BCL11A (B-cell CLL/lymphoma 11A) and HBS1L-MYB (HBS1-like translational GTPase-MYB protooncogene, transcription factor) with regards to clinical severity.

    METHODS: A total of 149 patients were included in the study. HBA and HBB mutations were characterised using multiplex PCR, Sanger sequencing and multiplex ligationdependent probe amplification. In addition, 35 HbF polymorphisms were genotyped using mass spectrometry and PCR-restriction fragment length polymorphism (PCRRFLP). The genotype-phenotype association was analysed using SPSS version 22.

    RESULTS: Twenty-one HBB mutations were identified in the study population. Patients with HBB mutations had heterogeneous phenotypic severity due to the presence of other secondary modifiers. Co-inheritance of α-thalassemia (n = 12) alleviated disease severity of β-thalassemia. In addition, three polymorphisms (HBS1LMYB, rs4895441 [P = 0.008, odds ratio (OR) = 0.38 (0.18, 0.78)], rs9376092 [P = 0.030, OR = 0.36 (0.14, 0.90)]; and olfactory receptor [OR51B2] rs6578605 [P = 0.018, OR = 0.52 (0.31, 0.89)]) were associated with phenotypic severity. Secondary analysis of the association between single-nucleotide polymorphisms with HbF levels revealed three nominally significant SNPs: rs6934903, rs9376095 and rs9494149 in HBS1L-MYB.

    CONCLUSION: This study revealed 3 types of HbF polymorphisms that play an important role in ameliorating disease severity of β-thalassemia patients which may be useful as a predictive marker in clinical management.

    Matched MeSH terms: GTP-Binding Proteins/genetics*
  3. Hashim IF, Ahmad Mokhtar AM
    Int J Biochem Cell Biol, 2021 08;137:106034.
    PMID: 34216756 DOI: 10.1016/j.biocel.2021.106034
    Primary immunodeficiencies (PIDs) are associated with deleterious mutations of genes that encode proteins involved in actin cytoskeleton reorganisation. This deficiency affects haematopoietic cells. PID results in the defective function of immune cells, such as impaired chemokine-induced motility, receptor signalling, development and maturation. Some of the genes mutated in PIDs are related to small Ras homologous (Rho) guanosine triphosphatase (GTPase), one of the families of the Ras superfamily. Most of these genes act as molecular switches by cycling between active guanosine triphosphate-bound and inactive guanosine diphosphate-bound forms to control multiple cellular functions. They are best studied for their role in promoting cytoskeleton reorganisation, cell adhesion and motility. Currently, only three small Rho GTPases, namely, Rac2, Cdc42 and RhoH, have been identified in PIDs. However, several other Rho small G proteins might also contribute to the deregulation and phenotype observed in PIDs. Their contribution in PIDs may involve their main regulator, Rho guanine nucleotide exchange factors such as DOCK2 and DOCK8, wherein mutations may result in the impairment of small Rho GTPase activation. Thus, this review outlines the potential contribution of several small Rho GTPases to the promotion of PIDs.
    Matched MeSH terms: rho GTP-Binding Proteins/genetics*
  4. Kee BP, Ng JG, Ng CC, Hilmi I, Goh KL, Chua KH
    J Dig Dis, 2020 Jan;21(1):29-37.
    PMID: 31654602 DOI: 10.1111/1751-2980.12829
    OBJECTIVE: To investigate the association between genetic polymorphisms in ATG16L1 and IRGM genes and the development of Crohn's disease (CD) in Malaysian patients.

    METHODS: Altogether 335 participants were recruited, including 85 patients with CD and 250 unrelated healthy controls, and their informed consent was obtained. Genomic DNA was extracted via a conventional phenol-chloroform extraction method. Six single nucleotide polymorphisms (SNPs) in ATG16L1 and IRGM genes were genotyped using TaqMan SNP genotyping assays. Associations between SNP and CD were determined using Fisher's exact test, odds ratio, and 95% confidence interval. Statistical power and the Hardy-Weinberg equilibrium were also calculated.

    RESULTS: Two SNPs (rs2241880 and rs6754677) in the ATG16L1 gene were significantly associated with the onset of CD in the Malaysian population. The A allele and homozygous A/A genotype of the rs2241880 A/G polymorphism were protective against CD in the overall Malaysian and Malay population. The G allele and homozygous G/G genotype of the rs6754677 G/A polymorphism were protective in the Indian population, whereas the homozygous A/A genotype showed a risk of developing CD. The homozygous G/G genotype of IRGM rs11747270 was significantly present in the controls. However, this significance was not observed in a race-stratified analysis. All three ATG16L1 SNPs were associated with inflamed terminal ileum. IRGM rs4958847 and rs11747270 increased the risk of developing arthritis in patients with CD.

    CONCLUSION: We found a significant association between SNP, which are located in autophagy-related genes, and CD in a Malaysian population.

    Matched MeSH terms: GTP-Binding Proteins/genetics*
  5. Earp M, Tyrer JP, Winham SJ, Lin HY, Chornokur G, Dennis J, et al.
    PLoS One, 2018;13(7):e0197561.
    PMID: 29979793 DOI: 10.1371/journal.pone.0197561
    Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality in American women. Normal ovarian physiology is intricately connected to small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) which govern processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. We hypothesized that common germline variation in genes encoding small GTPases is associated with EOC risk. We investigated 322 variants in 88 small GTPase genes in germline DNA of 18,736 EOC patients and 26,138 controls of European ancestry using a custom genotype array and logistic regression fitting log-additive models. Functional annotation was used to identify biofeatures and expression quantitative trait loci that intersect with risk variants. One variant, ARHGEF10L (Rho guanine nucleotide exchange factor 10 like) rs2256787, was associated with increased endometrioid EOC risk (OR = 1.33, p = 4.46 x 10-6). Other variants of interest included another in ARHGEF10L, rs10788679, which was associated with invasive serous EOC risk (OR = 1.07, p = 0.00026) and two variants in AKAP6 (A-kinase anchoring protein 6) which were associated with risk of invasive EOC (rs1955513, OR = 0.90, p = 0.00033; rs927062, OR = 0.94, p = 0.00059). Functional annotation revealed that the two ARHGEF10L variants were located in super-enhancer regions and that AKAP6 rs927062 was associated with expression of GTPase gene ARHGAP5 (Rho GTPase activating protein 5). Inherited variants in ARHGEF10L and AKAP6, with potential transcriptional regulatory function and association with EOC risk, warrant investigation in independent EOC study populations.
    Matched MeSH terms: Monomeric GTP-Binding Proteins/genetics*
  6. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, Razak G, et al.
    Lipids, 2004 May;39(5):459-67.
    PMID: 15506241
    It has recently been shown that tocotrienols are the components of vitamin E responsible for inhibiting the growth of human breast cancer cells in vitro, through an estrogen-independent mechanism. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. To investigate the molecular basis of the effect of tocotrienols, we injected MCF-7 breast cancer cells into athymic nude mice. Mice were fed orally with 1 mg/d of tocotrienol-rich fraction (TRF) for 20 wk. At end of the 20 wk, there was a significant delay in the onset, incidence, and size of the tumors in nude mice supplemented with TRF compared with the controls. At autopsy, the tumor tissue was excised and analyzed for gene expression by means of a cDNA array technique. Thirty out of 1176 genes were significantly affected. Ten genes were downregulated and 20 genes up-regulated with respect to untreated animals, and some genes in particular were involved in regulating the immune system and its function. The expression of the interferon-inducible transmembrane protein-1 gene was significantly up-regulated in tumors excised from TRF-treated animals compared with control mice. Within the group of genes related to the immune system, we also found that the CD59 glycoprotein precursor gene was up-regulated. Among the functional class of intracellular transducers/effectors/modulators, the c-myc gene was significantly down-regulated in tumors by TRF treatment. Our observations indicate that TRF supplementation significantly and specifically affects MCF-7 cell response after tumor formation in vivo and therefore the host immune function. The observed effect on gene expression is possibly exerted independently from the antioxidant activity typical of this family of molecules.
    Matched MeSH terms: GTP-Binding Proteins/genetics
  7. Lawson T, Lycett GW, Mayes S, Ho WK, Chin CF
    Mol Biol Rep, 2020 Jun;47(6):4183-4197.
    PMID: 32444976 DOI: 10.1007/s11033-020-05519-y
    The Rab GTPase family plays a vital role in several plant physiological processes including fruit ripening. Fruit softening during ripening involves trafficking of cell wall polymers and enzymes between cellular compartments. Mango, an economically important fruit crop, is known for its delicious taste, exotic flavour and nutritional value. So far, there is a paucity of information on the mango Rab GTPase family. In this study, 23 genes encoding Rab proteins were identified in mango by a comprehensive in silico approach. Sequence alignment and similarity tree analysis with the model plant Arabidopsis as a reference enabled the bona fide assignment of the deduced mango proteins to classify into eight subfamilies. Expression analysis by RNA-Sequencing (RNA-Seq) showed that the Rab genes were differentially expressed in ripe and unripe mangoes suggesting the involvement of vesicle trafficking during ripening. Interaction analysis showed that the proteins involved in vesicle trafficking and cell wall softening were interconnected providing further evidence of the involvement of the Rab GTPases in fruit softening. Correlation analyses showed a significant relationship between the expression level of the RabA3 and RabA4 genes and fruit firmness at the unripe stage of the mango varieties suggesting that the differences in gene expression level might be associated with the contrasting firmness of these varieties. This study will not only provide new insights into the complexity of the ripening-regulated molecular mechanism but also facilitate the identification of potential Rab GTPases to address excessive fruit softening.
    Matched MeSH terms: rab GTP-Binding Proteins/genetics*
  8. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: rho GTP-Binding Proteins/genetics
  9. Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, Omar AR, El Zowalaty M, Ajdari Z, et al.
    Int J Mol Med, 2014 Jul;34(1):61-73.
    PMID: 24788303 DOI: 10.3892/ijmm.2014.1761
    Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
    Matched MeSH terms: rab GTP-Binding Proteins/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links