Displaying all 18 publications

Abstract:
Sort:
  1. Chiari L, Duque HV, Jones DB, Thorn PA, Pettifer Z, da Silva GB, et al.
    J Chem Phys, 2014 Jul 14;141(2):024301.
    PMID: 25028013 DOI: 10.1063/1.4885856
    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20-50 eV, while the scattered electron was detected in the 10°-90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, "rotationally averaged" elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].
    Matched MeSH terms: Furans/chemistry*
  2. Ee GC, Teo SH, Rahmani M, Lim CK, Lim YM, Go R
    Nat Prod Res, 2011 Jun;25(10):995-1003.
    PMID: 21644180 DOI: 10.1080/14786419.2010.534471
    A new furanodihydrobenzoxanthone, artomandin (1), together with three other flavonoid derivatives, artoindonesianin C, artonol B, and artochamin A, as well as β-sitosterol were isolated from the stem bark of Artocarpus kemando. The structures of these compounds were determined on the basis of spectral evidence. All of these compounds displayed inhibition effects to a very susceptible degree in cancer cell line tests. Compound 1 also exhibited significant antioxidant capacity in the free radical 1,1-diphenyl-2-picrylhydrazyl tests.
    Matched MeSH terms: Furans/chemistry
  3. Saad JM, Soepadamo E, Fang XP, McLaughlin JL, Fanwick PE
    J Nat Prod, 1991 11 1;54(6):1681-3.
    PMID: 1812217
    The known lignan (-)-grandisin [1] has been isolated from Cryptocarya crassinervia by using the brine shrimp lethality test to direct the isolation; its structure and relative stereochemistry have been determined by ir, 1H nmr, ms, and X-ray crystallography as an all-trans alpha, alpha'-diaryl-beta, beta'-dimethyltetrahydrofuran. Compound 1 is not significantly cytotoxic in our panel of human tumor cells.
    Matched MeSH terms: Furans/chemistry
  4. Wong SK, Wong SP, Sim KS, Lim SH, Low YY, Kam TS
    J Nat Prod, 2019 07 26;82(7):1902-1907.
    PMID: 31241923 DOI: 10.1021/acs.jnatprod.9b00255
    Three new alkaloids were isolated from the bark extract of the Malayan Kopsia arborea, viz., arbophyllidine (1), an unusual pentacyclic, monoterpenoid indole characterized by an absence of oxygen atoms and incorporating a new carbon-nitrogen skeleton, and arbophyllinines A (2) and B (3), two pentacyclic corynanthean alkaloids incorporating a hydroxyethyl-substituted tetrahydrofuranone ring. The structures of the alkaloids were deduced based on analysis of the MS and NMR data and confirmed by X-ray diffraction analyses. The absolute configuration of arbophyllidine (1) was established based on experimental and calculated ECD data, while that of arbophyllinine A was based on X-ray diffraction analysis (Cu Kα). A reasonable biosynthetic route to arbophyllidine (1) from a pericine precursor is presented. Arbophyllidine (1) showed pronounced in vitro growth inhibitory activity against the HT-29 human cancer cell line with IC50 6.2 μM.
    Matched MeSH terms: Furans/chemistry*
  5. Ee GC, Mah SH, Rahmani M, Taufiq-Yap YH, Teh SS, Lim YM
    J Asian Nat Prod Res, 2011 Oct;13(10):956-60.
    PMID: 21972812 DOI: 10.1080/10286020.2011.600248
    The stem bark extracts of Calophyllum inophyllum furnished one new furanoxanthone, inophinnin (1), in addition to inophyllin A (2), macluraxanthone (3), pyranojacareubin (4), 4-hydroxyxanthone, friedelin, stigmasterol, and betulinic acid. The structures of these compounds were determined by spectroscopic analysis of 1D and 2D NMR spectral data ((1)H, (13)C, DEPT, COSY, HMQC, and HMBC) while EI-MS gave the molecular mass. The new xanthone, inophinnin (1), exhibited some anti-inflammatory activity in nitric oxide assay.
    Matched MeSH terms: Furans/chemistry
  6. Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, et al.
    Bioorg Chem, 2019 11;92:103201.
    PMID: 31445195 DOI: 10.1016/j.bioorg.2019.103201
    We have carried out the synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamide derivatives by the reaction between isatoic anhydride, 2-furoic hydrazide and substituted salicylaldehydes in ethanol: water (5:5 v/v) solvent system using p-TSA as a catalyst under ultrasound irradiation at room temperature. The structures of newly synthesized compounds were confirmed through spectral techniques such as IR, 1H NMR, 13C NMR, and LCMS. The important features of this protocol include simple and easy workup procedure, reaction carried out at ambient temperature, use of ultrasound and high yield of oxoquinazolin-3(4H)-yl)furan-2-carboxamides in short reaction time. The synthesized compounds 4a-4j were screened against tyrosinase enzyme and all these compounds found to be potent inhibitors with much lower IC50 value of 0.028 ± 0.016 to 1.775 ± 0.947 µM than the standard kojic acid (16.832 ± 1.162 µM). The kinetics mechanism for compound 4e was analyzed by Lineweaver-Burk plots which revealed that compound inhibited tyrosinase non-competitively by forming an enzyme-inhibitor complex. Along with this all the synthesized compounds (4a-4j) were scanned for their DPPH free radical scavenging ability. The outputs received through in vitro and in silico analysis are coherent to the each other with good binding energy values (kcal/mol) posed by synthesized ligands.
    Matched MeSH terms: Furans/chemistry
  7. Teo CY, Tejo BA, Leow ATC, Salleh AB, Abdul Rahman MB
    Chem Biol Drug Des, 2017 Dec;90(6):1134-1146.
    PMID: 28581157 DOI: 10.1111/cbdd.13033
    Protein arginine deiminase type IV (PAD4) is responsible for the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullinated protein is the autoantigen in rheumatoid arthritis, and therefore, PAD4 is currently a promising therapeutic target for the disease. Recently, we reported the importance of the furan ring in the structure of PAD4 inhibitors. In this study, the furan ring was incorporated into peptides to act as the "warhead" of the inhibitors for PAD4. IC50 studies showed that the furan-containing peptide-based inhibitors were able to inhibit PAD4 to a better extent than the furan-containing small molecules that were previously reported. The best peptide-based inhibitor inhibited PAD4 reversibly and competitively with an IC50 value of 243.2 ± 2.4 μm. NMR spectroscopy and NMR-restrained molecular dynamic simulations revealed that the peptide-based inhibitor had a random structure. Molecular docking studies showed that the peptide-based inhibitor entered the binding site and interacted with the essential amino acids involved in the catalytic activity. The peptide-based inhibitor could be further developed into a therapeutic drug for rheumatoid arthritis.
    Matched MeSH terms: Furans/chemistry*
  8. Mphahlele MJ, Choong YS, Maluleka MM, Gildenhuys S
    Biomolecules, 2020 03 07;10(3).
    PMID: 32156083 DOI: 10.3390/biom10030418
    The 5-acetyl-2-aryl-6-hydroxybenzo[b]furans 2a-h have been evaluated through in vitro enzymatic assay against targets which are linked to type 2 diabetes (T2D), namely, α-glucosidase, protein tyrosine phosphatase 1B (PTP1B) and β-secretase. These compounds have also been evaluated for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method. The most active compounds against α-glucosidase and/or PTP1B, namely, 4-fluorophenyl 2c, 4-methoxyphenyl 2g and 3,5-dimethoxyphenyl substituted 2h derivatives were also evaluated for potential anti-inflammatory properties against cyclooxygenase-2 activity. The Lineweaver-Burk and Dixon plots were used to determine the type of inhibition on compounds 2c and 2h against α-glucosidase and PTP1B receptors. The interactions were investigated in modelled complexes against α-glucosidase and PTP1B via molecular docking.
    Matched MeSH terms: Furans/chemistry*
  9. Ravishankar D, Salamah M, Akimbaev A, Williams HF, Albadawi DAI, Vaiyapuri R, et al.
    Sci Rep, 2018 Jun 22;8(1):9528.
    PMID: 29934595 DOI: 10.1038/s41598-018-27809-z
    Flavonoids exert innumerable beneficial effects on cardiovascular health including the reduction of platelet activation, and thereby, thrombosis. Hence, flavonoids are deemed to be a molecular template for the design of novel therapeutic agents for various diseases including thrombotic conditions. However, the structure-activity relationships of flavonoids with platelets is not fully understood. Therefore, this study aims to advance the current knowledge on structure-activity relationships of flavonoids through a systematic analysis of structurally-related flavones. Here, we investigated a panel of 16 synthetic flavones containing hydroxy or methoxy groups at C-7,8 positions on the A-ring, with a phenyl group or its bioisosteres as the B-ring, along with their thio analogues possessing a sulfur molecule at the 4th carbon position of the C-ring. The antiplatelet efficacies of these compounds were analysed using human isolated platelets upon activation with cross-linked collagen-related peptide by optical aggregometry. The results demonstrate that the hydroxyl groups in flavonoids are important for optimum platelet inhibitory activities. In addition, the 4-C=O and B ring phenyl groups are less critical for the antiplatelet activity of these flavonoids. This structure-activity relationship of flavonoids with the modulation of platelet function may guide the design, optimisation and development of flavonoid scaffolds as antiplatelet agents.
    Matched MeSH terms: Furans/chemistry
  10. Ahmat N, Wibowo A, Mohamad SA, Low AL, Sufian AS, Yusof MI, et al.
    J Asian Nat Prod Res, 2014;16(11):1099-107.
    PMID: 25034352 DOI: 10.1080/10286020.2014.938059
    A new tetramer oligostilbenoid possessing tetrahydrofuran ring, malaysianol C (1), was isolated from the acetone extract of the stem bark of Dryobalanops lanceolata, together with four known oligostilbenoids nepalensinol E (2), ϵ-viniferin (3), laevifonol (4), and ampelopsin F (5). The structures of isolated compounds were elucidated on the basis of spectral evidence. The antibacterial activity of the isolated compounds was evaluated using resazurin microtitre-plate assay, whereas the cytotoxic activity was tested using MTT assay. The plausible biogenetic routes of the isolated compounds are also discussed.
    Matched MeSH terms: Benzofurans/chemistry; Furans/chemistry
  11. Lim SH, Mahmood K, Komiyama K, Kam TS
    J Nat Prod, 2008 Jun;71(6):1104-6.
    PMID: 18462006 DOI: 10.1021/np800123g
    A new cycloartane, monocarpinine (1), incorporating a fused tetrahydrofuranyl ring, and a cytotoxic tetracyclic lactam, monomarginine (2), were isolated from a stem bark extract of the Malayan species Monocarpia marginalis. The structures of these compounds were determined using NMR and MS analysis. Monomarginine (2) showed appreciable cytotoxicity toward human KB (both drug-sensitive and drug-resistant) and Jurkat cells.
    Matched MeSH terms: Furans/chemistry
  12. Santhanam RK, Ahmad S, Abas F, Safinar Ismail I, Rukayadi Y, Tayyab Akhtar M, et al.
    Molecules, 2016 May 24;21(6).
    PMID: 27231889 DOI: 10.3390/molecules21060652
    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.
    Matched MeSH terms: Furans/chemistry
  13. Tan HH, Thomas NF, Inayat-Hussain SH, Chan KM
    PLoS One, 2020;15(5):e0223344.
    PMID: 32365104 DOI: 10.1371/journal.pone.0223344
    Stilbenes are a group of chemicals characterized with the presence of 1,2-diphenylethylene. Previously, our group has demonstrated that synthesized (E)-N-(2-(3, 5-dimethoxystyryl) phenyl) furan-2-carboxamide (BK3C231) possesses potential chemopreventive activity specifically inducing NAD(P)H:quinone oxidoreductase 1 (NQO1) protein expression and activity. In this study, the cytoprotective effects of BK3C231 on cellular DNA and mitochondria were investigated in normal human colon fibroblast, CCD-18Co cells. The cells were pretreated with BK3C231 prior to exposure to the carcinogen 4-nitroquinoline 1-oxide (4NQO). BK3C231 was able to inhibit 4NQO-induced cytotoxicity. Cells treated with 4NQO alone caused high level of DNA and mitochondrial damages. However, pretreatment with BK3C231 protected against these damages by reducing DNA strand breaks and micronucleus formation as well as decreasing losses of mitochondrial membrane potential (ΔΨm) and cardiolipin. Interestingly, our study has demonstrated that nitrosative stress instead of oxidative stress was involved in 4NQO-induced DNA and mitochondrial damages. Inhibition of 4NQO-induced nitrosative stress by BK3C231 was observed through a decrease in nitric oxide (NO) level and an increase in glutathione (GSH) level. These new findings elucidate the cytoprotective potential of BK3C231 in human colon fibroblast CCD-18Co cell model which warrants further investigation into its chemopreventive role.
    Matched MeSH terms: Furans/chemistry
  14. Ismail NI, Ming-Tatt L, Lajis N, Akhtar MN, Akira A, Perimal EK, et al.
    Molecules, 2016 Aug 22;21(8).
    PMID: 27556438 DOI: 10.3390/molecules21081077
    The antinociceptive effects produced by intraperitoneal administration of a novel synthetic chalcone, 3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMFP), were investigated in several mouse models of induced nociception. The administration of DMFP (0.1, 0.5, 1.0 and 5.0 mg/kg) produced significant attenuation on the acetic acid-induced abdominal-writhing test. It also produced a significant increase in response latency time in the hot-plate test and a marked reduction in time spent licking the injected paw in both phases of the formalin-induced paw-licking test. In addition, it was also demonstrated that DMFP exhibited significant inhibition of the neurogenic nociceptive response induced by intraplantar injections of capsaicin and glutamate. Moreover, the antinociceptive effect of DMFP in the acetic acid-induced abdominal-writhing test and the hot-plate test was not antagonized by pretreatment with a non-selective opioid receptor antagonist, naloxone. Finally, DMFP did not show any toxic effects and/or mortality in a study of acute toxicity and did not interfere with motor coordination during the Rota-rod test. Our present results show that DMFP exhibits both peripheral and central antinociceptive effects. It was suggested that its peripheral antinociceptive activity is associated with attenuated production and/or release of NO and various pro-inflammatory mediators, while central antinociceptive activity seems to be unrelated to the opioidergic system, but could involve, at least in part, an interaction with the inhibition of capsaicin-sensitive fibers and the glutamatergic system.
    Matched MeSH terms: Furans/chemistry
  15. Liew CY, Tham CL, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al.
    Immunopharmacol Immunotoxicol, 2010 Sep;32(3):495-506.
    PMID: 20109039 DOI: 10.3109/08923970903575708
    HMP [3-(2-hydroxyphenyl)-1-(5-methyl-furan-2-y-l) propenone] was evaluated for its ability to inhibit the synthesis of major proinflammatory mediators and cytokines in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells and phorbol myristate acetate (PMA)-differentiated/LPS-induced U937 cells. HMP suppressed the production of nitric oxide (NO) with significant inhibitory effects at doses as low as 0.78 microM (P < 0.05). Prostaglandin E2 (PGE2) secretion was also inhibited at doses of 12.5 microM and above (P < 0.01). The secretion of both TNF-alpha and IL-6 were only inhibited at the highest dose used (25 microM; P < 0.001). IL-1beta secretion was also inhibited from 12.5 microM onwards (P < 0.01). This inhibition was demonstrated to be caused by down-regulation of inducible enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), without direct effect upon iNOS or COX-2 enzyme activity. HMP only inhibited iNOS (P < 0.001) and IL-1beta (P < 0.05) gene expression at the highest tested concentration. HMP did not affect the secretion of chemokines IL-8 and monocyte chemotactic protein-1 (MCP-1) and the anti-inflammatory cytokine IL-10. The most striking effect of HMP was its NO inhibitory activity and therefore we conclude that HMP is a selective inhibitor of iNOS.
    Matched MeSH terms: Furans/chemistry
  16. Moharam BA, Jantan I, Jalil J, Ahmad F
    Phytother Res, 2012 May;26(5):687-91.
    PMID: 22002630 DOI: 10.1002/ptr.3620
    Phytochemical investigation on the bark of Goniothalamus tapis Miq. and G. uvaroides King has resulted in the isolation of eight styryl-lactones, (-)-cryptomeridiol, liriodenine, 3-methyl-1H-benz[f]indole-4,9-dione, (-)-stigmasterol and dimethyl terephthalate. The structures of the compounds were elucidated by spectroscopic techniques. The compounds were evaluated for their effect on platelet-activating factor (PAF) receptor binding on rabbit platelets using (3) H-PAF as a ligand. Among the compounds tested, (-)-cryptomeridiol, (+)-goniothalamin and (+)-isoaltholactone exhibited a significant and concentration-dependent inhibitory effect on PAF receptor binding, with inhibitory concentration (IC)(50) values of 17.5, 19.7 and 46.5 µm, respectively. The inhibitory effects of the first two compounds were comparable to that obtained from the positive control, cedrol. The results indicated that these compounds were strong PAF receptor binding inhibitors.
    Matched MeSH terms: Furans/chemistry
  17. Zorofchian Moghadamtousi S, Rouhollahi E, Karimian H, Fadaeinasab M, Firoozinia M, Ameen Abdulla M, et al.
    PLoS One, 2015;10(4):e0122288.
    PMID: 25860620 DOI: 10.1371/journal.pone.0122288
    Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the anticancer activity of A. muricata leaves.
    Matched MeSH terms: Furans/chemistry
  18. Nor Azman NS, Hossan MS, Nissapatorn V, Uthaipibull C, Prommana P, Jin KT, et al.
    Exp Parasitol, 2018 Nov;194:67-78.
    PMID: 30268422 DOI: 10.1016/j.exppara.2018.09.020
    Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically important plant species in Malaysia. Chloroform extracts were tested for their toxicity against MRC-5 cells and Leishmania donovani by MTT, and chloroquine-resistant Plasmodium falciparum K1 strain by Histidine-Rich Protein II ELISA assays. None of the extract tested was cytotoxic to MRC-5 cells. Extracts of Uvaria grandiflora, Chilocarpus costatus, Tabernaemontana peduncularis, and Leuconotis eugenifolius had good activities against L. donovani with IC50 
    Matched MeSH terms: Furans/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links