Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Zahid NI, Abou-Zied OK, Hashim R, Heidelberg T
    Langmuir, 2012 Mar 20;28(11):4989-95.
    PMID: 22364590 DOI: 10.1021/la3001976
    Water-driven self-assembly of lipids displays a variety of liquid crystalline phases that are crucial for membrane functions. Herein, we characterize the temperature-induced phase transitions in two compositions of an aqueous self-assembly system of the octyl β-D-glucoside (βGlcOC(8)) system, using steady-state and time-resolved fluorescence measurements. The phase transitions hexagonal ↔ micellar and cubic ↔ lamellar were investigated using tryptophan (Trp) and two of its ester derivatives (Trp-C(4) and Trp-C(8)) to probe the polar headgroup region and pyrene to probe the hydrophobic tail region. The polarity of the headgroup region was estimated to be close to that of simple alcohols (methanol and ethanol) for all phases. The pyrene fluorescence indicates that the pyrene molecules are dispersed among the tails of the hydrophobic region, yet remain in close proximity to the polar head groups. Comparing the present results with our previously reported one for βMaltoOC(12), increasing the tail length of the hexagonal phase from C(8) to C(12) leads to less interaction with pyrene, which is attributed to the more random and wobbling motion of the longer alkyl tail. We measured a reduction (more hydrophobic) in the ratio of the vibronic peak intensities of pyrene (I(1)/I(3)) for the lamellar phase compared to that of the cubic phase. The higher polarity in the cubic phase can be correlated to the nature of its interface, which curves toward the bulk water. This geometry also explains the slight reduction in polarity of the headgroup region compared to the other phases. Upon the addition of Trp-C(8), the fluorescence lifetime of pyrene is reduced by 28% in the lamellar and cubic phases, whereas the I(1)/I(3) value is only slightly reduced. The results reflect the dominant role of dynamic interaction mechanism between the C(8) chain of Trp-C(8) and pyrene. This mechanism may be important for these two phases since they participate in the process of membrane fusion. Both lipid compositions show completely reversible temperature-induced phase transitions, reflecting the thermodynamic equilibrium structures of their mesophases. Probing both regions of the different lipid phases reveals a large degree of heterogeneity and flexibility of the lipid self-assembly. These properties are crucial for carrying out different biological functions such as the ability to accommodate various molecular sizes.
    Matched MeSH terms: Fluorescent Dyes/chemistry*
  2. Hasan A, Abbas A, Akhtar MN
    Molecules, 2011 Sep 13;16(9):7789-802.
    PMID: 22143543 DOI: 10.3390/molecules16097789
    A series of 1,3,5-triaryl-2-pyrazolines was synthesized by dissolving the corresponding 4-alkoxychalcones in glacial acetic acid containing a few drops of concentrated hydrochloric acid. This step was followed by the addition of (3,4-dimethylphenyl) hydrazaine hydrochloride. Finally the target compounds were precipitated by pouring the reaction mixture onto crushed ice. The structures of the synthesized compounds were established by physicochemical and spectroscopic methods. The 1,3,5-triaryl-2-pyrazolines bearing homologous alkoxy groups were found to possess fluorescence properties in the blue region of the visible spectrum when irradiated with ultraviolet radiation. The fluorescent behavior of these compounds was studied by UV-Vis and emission spectroscopy, performed at room temperature.
    Matched MeSH terms: Fluorescent Dyes/chemical synthesis*; Fluorescent Dyes/chemistry*
  3. Yusop RM, Unciti-Broceta A, Bradley M
    Bioorg Med Chem Lett, 2012 Sep 15;22(18):5780-3.
    PMID: 22901897 DOI: 10.1016/j.bmcl.2012.07.101
    Variation at the 3' position of fluorescein via Suzuki-Miyaura cross-coupling with aryl and heteroaryl moieties gave a family of anthofluoresceins whose spectroscopic properties were studied. The 1-methylindole derivative gave the highest quantum yield and was observed to behave as a molecular rotor, displaying marked variations in fluorescent intensities with viscosity and offering possible application in cellular sensing and fluorescent polarisation assays.
    Matched MeSH terms: Fluorescent Dyes/chemical synthesis; Fluorescent Dyes/chemistry*
  4. Abou-Zied OK, Zahid NI, Khyasudeen MF, Giera DS, Thimm JC, Hashim R
    Sci Rep, 2015;5:8699.
    PMID: 25731606 DOI: 10.1038/srep08699
    Local heterogeneity in lipid self-assembly is important for executing the cellular membrane functions. In this work, we chemically modified 2-(2'-hydroxyphenyl)benzoxazole (HBO) and attached a C8 alkyl chain in two different locations to probe the microscopic environment of four lipidic phases of dodecyl β-maltoside. The fluorescence change in HBO and the new probes (HBO-1 and HBO-2) shows that in all phases (micellar, hexagonal, cubic and lamellar) three HBO tautomeric species (solvated syn-enol, anionic, and closed syn-keto) are stable. The formation of multi tautomers reflects the heterogeneity of the lipidic phases. The results indicate that HBO and HBO-1 reside in a similar location within the head group region, whereas HBO-2 is slightly pushed away from the sugar-dominated area. The stability of the solvated syn-enol tautomer is due to the formation of a hydrogen bond between the OH group of the HBO moiety and an adjacent oxygen atom of a sugar unit. The detected HBO anions was proposed to be a consequence of this solvation effect where a hydrogen ion abstraction by the sugar units is enhanced. Our results point to a degree of local heterogeneity and ionization ability in the head group region as a consequence of the sugar amphoterism.
    Matched MeSH terms: Fluorescent Dyes/chemistry*
  5. Razali WA, Sreenivasan VK, Bradac C, Connor M, Goldys EM, Zvyagin AV
    J Biophotonics, 2016 08;9(8):848-58.
    PMID: 27264934 DOI: 10.1002/jbio.201600050
    Fluorescence microscopy is a fundamental technique for the life sciences, where biocompatible and photostable photoluminescence probes in combination with fast and sensitive imaging systems are continually transforming this field. A wide-field time-gated photoluminescence microscopy system customised for ultrasensitive imaging of unique nanoruby probes with long photoluminescence lifetime is described. The detection sensitivity derived from the long photoluminescence lifetime of the nanoruby makes it possible to discriminate signals from unwanted autofluorescence background and laser backscatter by employing a time-gated image acquisition mode. This mode enabled several-fold improvement of the photoluminescence imaging contrast of discrete nanorubies dispersed on a coverslip. It enabled recovery of the photoluminescence signal emanating from discrete nanorubies when covered by a layer of an organic fluorescent dye, which were otherwise invisible without the use of spectral filtering approaches. Time-gated imaging also facilitated high sensitivity detection of nanorubies in a biological environment of cultured cells. Finally, we monitor the binding kinetics of nanorubies to a functionalised substrate, which exemplified a real-time assay in biological fluids. 3D-pseudo colour images of nanorubies immersed in a highly fluorescent dye solution. Nanoruby photoluminescence is subdued by that of the dye in continuous excitation/imaging (left), however it can be recovered by time-gated imaging (right). At the bottom is schematic diagram of nanoruby assay in a biological fluid.
    Matched MeSH terms: Fluorescent Dyes*
  6. Arul P, Nandhini C, Huang ST, Gowthaman NSK
    Anal Chim Acta, 2023 Sep 15;1274:341582.
    PMID: 37455066 DOI: 10.1016/j.aca.2023.341582
    Tannic acid (TA) is a water-soluble polyphenol and used in beverages, medical fields as clarifying and additive agents. In daily life, TA is unavoidable, and excessive consumption of tannin containing foods can harm health. Thus, rapid and sensitive quantification is highly necessary. Herein, an eco-friendly fluorometric and electrochemical sensing of TA was developed based on a dysprosium(III)-metal-organic framework (Dy(III)-MOF). An aqueous dispersion of Dy(III)-MOF exhibits strong dual emissions at 479 and 572 nm with an excitation at 272 nm, due to the 4f-4f electronic transition and "antenna effect". Chromophore site of the functional ligand, and Dy(III) ion could potentially serve as a sensing probe for TA via quenching (fluorescence). The fluorometric sensor worked well in a wide linear range concentrations from 0.02 to 25 μM with a limit of detection (LOD) of 0.0053 μM. Secondly, the cyclic voltammetric of TA at Dy(III)-MOF modified screen-printed carbon electrode (SPCE) has been investigated. The Dy(III)-MOF/SPCE showed an anodic peak signal at +0.22 V with a five-fold stronger current than the control electrode surface. Under optimized sensing parameters, the Dy(III)-MOF/SPCE delivered wide linear concentrations from 0.01 to 200 μM with a LOD of 0.0023 μM (S/N = 3). Accessibility of real practical samples in alcoholic and juice-based beverages were quantified, resulting in superior recovery rates (98.13-99.53%), F-test, and t-test confirmed high reliability (<95% confidence level (n = 3)). Finally, practicability result of the electrochemical method was validated by fluorometric with a relative standard deviation (RSD) of 0.18-0.46 ± 0.17% (n = 3). The designed probe has proven to be a key candidate for the accurate analysis of TA in beverage samples to ensure food quality.
    Matched MeSH terms: Fluorescent Dyes
  7. Jahangir MA, Gilani SJ, Muheem A, Jafar M, Aslam M, Ansari MT, et al.
    Pharm Nanotechnol, 2019;7(3):234-245.
    PMID: 31486752 DOI: 10.2174/2211738507666190429113906
    BACKGROUND: The amalgamation of biological sciences with nano stuff has significantly expedited the progress of biological strategies, greatly promoting practical applications in biomedical fields.

    OBJECTIVE: With distinct optical attributes (e.g., robust photostability, restricted emission spectra, tunable broad excitation, and high quantum output), fluorescent quantum dots (QDs) have been feasibly functionalized with manageable interfaces and considerably utilized as a new class of optical probe in biological investigations.

    METHODS: In this review article, we structured the current advancements in the preparation methods and attributes of QDs. Furthermore, we extend an overview of the outstanding potential of QDs for biomedical research and radical approaches to drug delivery.

    CONCLUSION: Notably, the applications of QDs as smart next-generation nanosystems for neuroscience and pharmacokinetic studies have been explained. Moreover, recent interests in the potential toxicity of QDs are also apprised, ranging from cell investigations to animal studies.

    Matched MeSH terms: Fluorescent Dyes/toxicity; Fluorescent Dyes/chemistry*
  8. Abdul Manaf SA, Hegde G, Mandal UK, Wui TW, Roy P
    Curr Drug Deliv, 2017;14(8):1071-1077.
    PMID: 27745545 DOI: 10.2174/1567201813666161017130612
    BACKGROUND: Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application.

    OBJECTIVE: The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications.

    METHODS: This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques.

    RESULTS: The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure.

    CONCLUSION: Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications.

    Matched MeSH terms: Fluorescent Dyes/pharmacology*; Fluorescent Dyes/chemistry
  9. Sriram S, Kang NY, Subramanian S, Nandi T, Sudhagar S, Xing Q, et al.
    Stem Cell Res Ther, 2021 02 05;12(1):113.
    PMID: 33546754 DOI: 10.1186/s13287-021-02171-6
    BACKGROUND: Despite recent rapid progress in method development and biological understanding of induced pluripotent stem (iPS) cells, there has been a relative shortage of tools that monitor the early reprogramming process into human iPS cells.

    METHODS: We screened the in-house built fluorescent library compounds that specifically bind human iPS cells. After tertiary screening, the selected probe was analyzed for its ability to detect reprogramming cells in the time-dependent manner using high-content imaging analysis. The probe was compared with conventional dyes in different reprogramming methods, cell types, and cell culture conditions. Cell sorting was performed with the fluorescent probe to analyze the early reprogramming cells for their pluripotent characteristics and genome-wide gene expression signatures by RNA-seq. Finally, the candidate reprogramming factor identified was investigated for its ability to modulate reprogramming efficiency.

    RESULTS: We identified a novel BODIPY-derived fluorescent probe, BDL-E5, which detects live human iPS cells at the early reprogramming stage. BDL-E5 can recognize authentic reprogramming cells around 7 days before iPS colonies are formed and stained positive with conventional pluripotent markers. Cell sorting of reprogrammed cells with BDL-E5 allowed generation of an increased number and higher quality of iPS cells. RNA sequencing analysis of BDL-E5-positive versus negative cells revealed early reprogramming patterns of gene expression, which notably included CREB1. Reprogramming efficiency was significantly increased by overexpression of CREB1 and decreased by knockdown of CREB1.

    CONCLUSION: Collectively, BDL-E5 offers a valuable tool for delineating the early reprogramming pathway and clinically applicable commercial production of human iPS cells.

    Matched MeSH terms: Fluorescent Dyes
  10. Ibrahim MM, Al-Refai M, Al-Fawwaz A, Ali BF, Geyer A, Harms K, et al.
    J Fluoresc, 2018 Mar;28(2):655-662.
    PMID: 29680927 DOI: 10.1007/s10895-018-2227-2
    Furopyridine III, namely 1-(3-amino-4-(4-(tert-butyl)phenyl)-6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one, synthesized from 4-(4-(tert-butyl)phenyl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile I in two steps. The title compound is characterized by NMR, MS and its X-ray structure. The molecular structure consists of planar furopyridine ring with both phenyl rings being inclined from the furopyridine scaffold to a significant different extent. There are three intramolecular hydrogen bonds within the structure. The lattice is stabilized by N-H…O, H2C-H …π and π…π intermolecular interactions leading to three-dimensional network. Compound III exhibits fluorescent properties, which are investigated. Antimicrobial potential and antioxidant activity screening studies for the title compound III and the heterocyclic derivatives, I and II, show no activity towards neither bacterial nor fungal strains, while they exhibited weak to moderate antioxidant activity compared to reference.
    Matched MeSH terms: Fluorescent Dyes/chemical synthesis; Fluorescent Dyes/pharmacology; Fluorescent Dyes/chemistry
  11. Thomas J, Idris NA, Collings DA
    J Microsc, 2017 10;268(1):13-27.
    PMID: 28654160 DOI: 10.1111/jmi.12582
    Pontamine fast scarlet 4B is a red paper and textiles dye that has recently been introduced as a fluorescent probe for plant cell walls. Pontamine exhibits bifluorescence, or fluorescence dependent on the polarization of the excitation light: Because cellulose is aligned within the cell wall, pontamine-labelled cell walls exhibit variable fluorescence as the excitation polarization is modulated. Thus, bifluorescence measurements require polarized excitation that can be directly or indirectly modulated. In our confocal microscopy observations of various cellulose samples labelled with pontamine, we modulated excitation polarization either through sample rotation or by the confocal's scanfield rotation function. This variably rotated laser polarizations on Leica confocal microscopes, but not those from other makers. Beginning with samples with directly observable microfibril orientations, such as purified bacterial cellulose, the velamen of orchid roots and the inner S2 layer of radiata pine compression wood, we demonstrate that modelling the variations in pontamine fluorescence with a sine curve can be used to measure the known microfibril angles. We then measured average local microfibril angles in radiata pine samples, and showed similar microfibril angles in compression and normal (opposite) wood. Significantly, bifluorescence measurements might also be used to understand the degree of local cellulose alignment within the cell wall, as opposed to variations in the overall cellulose angle.
    Matched MeSH terms: Fluorescent Dyes
  12. Clavadetscher J, Hoffmann S, Lilienkampf A, Mackay L, Yusop RM, Rider SA, et al.
    Angew Chem Int Ed Engl, 2016 12 12;55(50):15662-15666.
    PMID: 27860120 DOI: 10.1002/anie.201609837
    The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has proven to be a pivotal advance in chemical ligation strategies with applications ranging from polymer fabrication to bioconjugation. However, application in vivo has been limited by the inherent toxicity of the copper catalyst. Herein, we report the application of heterogeneous copper catalysts in azide-alkyne cycloaddition processes in biological systems ranging from cells to zebrafish, with reactions spanning from fluorophore activation to the first reported in situ generation of a triazole-containing anticancer agent from two benign components, opening up many new avenues of exploration for CuAAC chemistry.
    Matched MeSH terms: Fluorescent Dyes
  13. Lee MK, Millns P, Mbaki Y, Ng ST, Tan CS, Lim KH, et al.
    Data Brief, 2018 Jun;18:1322-1326.
    PMID: 29900310 DOI: 10.1016/j.dib.2018.04.033
    The data in this article contain supporting evidence for the research manuscript entitled "Bronchodilator effects of Lignosus rhinocerotis extract on rat isolated airways is linked to the blockage of calcium entry" by Lee et al. (2018) [1]. The data were obtained by calcium imaging technique with fluorescent calcium indicator dyes, Fura 2-AM, to visualize calcium ion movement in the rat dorsal ganglion (DRG) cells. The effects of L. rhinocerotis cold water extract (CWE1) on intracellular calcium levels in the DRG cells were presented.
    Matched MeSH terms: Fluorescent Dyes
  14. Hashim H, Maruyama H, Akita Y, Arai F
    Sensors (Basel), 2019 Nov 29;19(23).
    PMID: 31795304 DOI: 10.3390/s19235247
    This work describes a hydrogel fluorescence microsensor for prolonged stable temperature measurements. Temperature measurement using microsensors has the potential to provide information about cells, tissues, and the culture environment, with optical measurement using a fluorescent dye being a promising microsensing approach. However, it is challenging to achieve stable measurements over prolonged periods with conventional measurement methods based on the fluorescence intensity of fluorescent dye because the excited fluorescent dye molecules are bleached by the exposure to light. The decrease in fluorescence intensity induced by photobleaching causes measurement errors. In this work, a photobleaching compensation method based on the diffusion of fluorescent dye inside a hydrogel microsensor is proposed. The factors that influence compensation in the hydrogel microsensor system are the interval time between measurements, material, concentration of photo initiator, and the composition of the fluorescence microsensor. These factors were evaluated by comparing a polystyrene fluorescence microsensor and a hydrogel fluorescence microsensor, both with diameters of 20 µm. The hydrogel fluorescence microsensor made from 9% poly (ethylene glycol) diacrylate (PEGDA) 575 and 2% photo initiator showed excellent fluorescence intensity stability after exposure (standard deviation of difference from initial fluorescence after 100 measurement repetitions: within 1%). The effect of microsensor size on the stability of the fluorescence intensity was also evaluated. The hydrogel fluorescence microsensors, with sizes greater than the measurement area determined by the axial resolution of the confocal microscope, showed a small decrease in fluorescence intensity, within 3%, after 900 measurement repetitions. The temperature of deionized water in a microchamber was measured for 5400 s using both a thermopile and the hydrogel fluorescence microsensor. The results showed that the maximum error and standard deviation of error between these two sensors were 0.5 °C and 0.3 °C, respectively, confirming the effectiveness of the proposed method.
    Matched MeSH terms: Fluorescent Dyes
  15. Jia TZ, Chandru K, Hongo Y, Afrin R, Usui T, Myojo K, et al.
    Proc Natl Acad Sci U S A, 2019 08 06;116(32):15830-15835.
    PMID: 31332006 DOI: 10.1073/pnas.1902336116
    Compartmentalization was likely essential for primitive chemical systems during the emergence of life, both for preventing leakage of important components, i.e., genetic materials, and for enhancing chemical reactions. Although life as we know it uses lipid bilayer-based compartments, the diversity of prebiotic chemistry may have enabled primitive living systems to start from other types of boundary systems. Here, we demonstrate membraneless compartmentalization based on prebiotically available organic compounds, α-hydroxy acids (αHAs), which are generally coproduced along with α-amino acids in prebiotic settings. Facile polymerization of αHAs provides a model pathway for the assembly of combinatorially diverse primitive compartments on early Earth. We characterized membraneless microdroplets generated from homo- and heteropolyesters synthesized from drying solutions of αHAs endowed with various side chains. These compartments can preferentially and differentially segregate and compartmentalize fluorescent dyes and fluorescently tagged RNA, providing readily available compartments that could have facilitated chemical evolution by protecting, exchanging, and encapsulating primitive components. Protein function within and RNA function in the presence of certain droplets is also preserved, suggesting the potential relevance of such droplets to various origins of life models. As a lipid amphiphile can also assemble around certain droplets, this further shows the droplets' potential compatibility with and scaffolding ability for nascent biomolecular systems that could have coexisted in complex chemical systems. These model compartments could have been more accessible in a "messy" prebiotic environment, enabling the localization of a variety of protometabolic and replication processes that could be subjected to further chemical evolution before the advent of the Last Universal Common Ancestor.
    Matched MeSH terms: Fluorescent Dyes
  16. Camerino MA, Liu M, Moriya S, Kitahashi T, Mahgoub A, Mountford SJ, et al.
    J. Pept. Sci., 2016 Jun;22(6):406-14.
    PMID: 27282137 DOI: 10.1002/psc.2883
    Kisspeptin analogues with improved metabolic stability may represent important ligands in the study of the kisspeptin/KISS1R system and have therapeutic potential. In this paper we assess the activity of known and novel kisspeptin analogues utilising a dual luciferase reporter assay in KISS1R-transfected HEK293T cells. In general terms the results reflect the outcomes of other assay formats and a number of potent agonists were identified among the analogues, including β(2) -hTyr-modified and fluorescently labelled forms. We also showed, by assaying kisspeptin in the presence of protease inhibitors, that proteolysis of kisspeptin activity within the reporter assay itself may diminish the agonist outputs. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
    Matched MeSH terms: Fluorescent Dyes/chemistry
  17. Yap AC, Mahamad UA, Lim SY, Kim HJ, Choo YM
    Sensors (Basel), 2014 Nov 10;14(11):21140-50.
    PMID: 25390405 DOI: 10.3390/s141121140
    Homocysteine and methylmalonic acid are important biomarkers for diseases associated with an impaired central nervous system (CNS). A new chemoassay utilizing coumarin-based fluorescent probe 1 to detect the levels of homocysteine is successfully implemented using Parkinson's disease (PD) patients' blood serum. In addition, a rapid identification of homocysteine and methylmalonic acid levels in blood serum of PD patients was also performed using the liquid chromatography-mass spectrometry (LC-MS). The results obtained from both analyses were in agreement. The new chemoassay utilizing coumarin-based fluorescent probe 1 offers a cost- and time-effective method to identify the biomarkers in CNS patients.
    Matched MeSH terms: Fluorescent Dyes*
  18. Pang YL, Abdullah AZ
    J Hazard Mater, 2012 Oct 15;235-236:326-35.
    PMID: 22939090 DOI: 10.1016/j.jhazmat.2012.08.008
    Fe-doped titanium dioxide (TiO(2)) nanotubes were prepared using sol-gel followed by hydrothermal methods and characterized using various methods. The sonocatalytic activity was evaluated based on oxidation of Rhodamine B under ultrasonic irradiation. Iron ions (Fe(3+)) might incorporate into the lattice and intercalated in the interlayer spaces of TiO(2) nanotubes. The catalysts showed narrower band gap energies, higher specific surface areas, more active surface oxygen vacancies and significantly improved sonocatalytic activity. The optimum Fe doping at Fe:Ti=0.005 showed the highest sonocatalytic activity and exceeded that of un-doped TiO(2) nanotubes by a factor of 2.3 times. It was believed that Fe(3+) doping induced the formation of new states close to the valence band and conduction bands and accelerated the separation of charge carriers. Leached Fe(3+) could catalyze Fenton-like reaction and led to an increase in the hydroxyl radical (OH) generation. Fe-doped TiO(2) nanotubes could retain high degradation efficiency even after being reused for 4 cycles with minimal loss of Fe from the surface of the catalyst.
    Matched MeSH terms: Fluorescent Dyes/chemistry
  19. Lim BN, Choong YS, Ismail A, Glökler J, Konthur Z, Lim TS
    Biotechniques, 2012 Dec;53(6):357-64.
    PMID: 23227986 DOI: 10.2144/000113964
    Directed evolution of nucleotide libraries using recombination or mutagenesis is an important technique for customizing catalytic or biophysical traits of proteins. Conventional directed evolution methods, however, suffer from cumbersome digestion and ligation steps. Here, we describe a simple method to increase nucleotide diversity using single-stranded DNA (ssDNA) as a starting template. An initial PCR amplification using phosphorylated primers with overlapping regions followed by treatment with lambda exonuclease generates ssDNA templates that can then be annealed via the overlap regions. Double-stranded DNA (dsDNA) is then generated through extension with Klenow fragment. To demonstrate the applicability of this methodology for directed evolution of nucleotide libraries, we generated both gene shuffled and regional mutagenesis synthetic antibody libraries with titers of 2×108 and 6×107, respectively. We conclude that our method is an efficient and convenient approach to generate diversity in nucleic acid based libraries, especially recombinant antibody libraries.
    Matched MeSH terms: Fluorescent Dyes/chemistry
  20. Fong JFY, Chin SF, Ng SM
    Biosens Bioelectron, 2016 Nov 15;85:844-852.
    PMID: 27290666 DOI: 10.1016/j.bios.2016.05.087
    Carbon dots (CDs) that showed strong blue fluorescence were successfully synthesised from sodium alginate via furnace pyrolysis. The single step pyrolytic synthesis was simple to perform while yielded CDs with high photostability, good water solubility and minimum by-products. In order to design the probe with "turn-on" sensing capability, the CDs were screened against a series of metal cations to first "turn-off" the fluorescence. It was found that ferric ions (Fe(3+)) were most responsive and effective in quenching the fluorescence of CDs. Based on this observation, the conditioning of the probe was performed to ensure the fluorescence was completely quenched, while not overloading the system with Fe(3+). At the optimised condition, the CDs-Fe(3+) mixture served as a highly specific detection probe for ascorbic acid (AA). The analytical potential of the probe was evaluated and showed a good linear range of response for AA concentration of 24-40μg/mL. The selectivity study against other possible co-existing species was carried out and proved that our unique "turn-on" fluorescence signalling strategy was highly effective and selective towards AA as the target analyte. The probe was demonstrated for quantification of AA in real samples, which was the commercially available vitamin C supplement. The result showed good accuracy with minimum deviation from standard method adopted for validation purpose.
    Matched MeSH terms: Fluorescent Dyes/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links