Displaying all 12 publications

Abstract:
Sort:
  1. Ewe JA, Loo SY
    Food Chem, 2016 Jun 15;201:29-36.
    PMID: 26868544 DOI: 10.1016/j.foodchem.2016.01.049
    The primary objective of this study was to evaluate the physicochemical and rheological properties of butter produced by Lactobacillus helveticus fermented cream. The incorporation of putative probiotic - the L. helveticus, to ferment cream prior to butter production was anticipated to alter the nutritional composition of butter. Changes in crude macronutrients and the resultant modification relating to textural properties of butter induced upon metabolic activities of L. helveticus in cream were focused in this research. Fermented butter (LH-butter) was produced by churning the cream that was fermented by lactobacilli at 37 °C for 24 h. Physicochemical analysis, proximate analysis and rheology properties of LH-butter were compared with butter produced using unfermented cream (control). LH-butter showed a significantly (P<0.05) higher fat content and acid value; lower moisture and ash; and was softer than the control. Cream fermentation modified nutritional and textural properties of butter in which LH-butter contained higher health beneficial unsaturated fatty acids than the control and thus rendered the product softer. Its enrichment with probiotics could thus further enhance its functional property.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry
  2. Sawitri DR, Mulyono P, Rochmadi, Hisyam A, Budiman A
    J Oleo Sci, 2020 Oct 07;69(10):1297-1305.
    PMID: 32908088 DOI: 10.5650/jos.ess20034
    Oleic acid is a mono-unsaturated fatty acid that can be found abundantly in various vegetable oils and potentially attractive to be used as raw material for epoxide chemical. In-situ epoxidation of oleic acid was conducted in batch reactor using peroxy-formic at 30-60°C. Pseudo-steady-state-hypothesis (PSSH) was applied to develop the kinetic model. Heterogeneous liquid-liquid system was chosen and four models which emphasized on the ring opening agent (ROA) and reversibility of the epoxidation reaction were proposed. It has been suggested that reversible model is well suited to represent the experimental data. Activation energy obtained from Arrhenius equation is in the range of 40-195 kJ/mol.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry*
  3. Zeimaran E, Kadir MR, Nor HM, Kamarul T, Djordjevic I
    Bioorg Med Chem Lett, 2013 Dec 15;23(24):6616-9.
    PMID: 24215893 DOI: 10.1016/j.bmcl.2013.10.053
    In this study aliphatic polyacids were synthesized using palm acid oil (PAO) and sunflower oil (SFO) via addition reaction technique. The synthesized materials were characterized using Fourier-transform infra-red (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) and thermo-gravimetric analysis (TGA). Mixing formic acid and hydrogen peroxide with PAO or SFO at the ratio 3:10:1 produced the lowest iodine value of 10.57 and 9.24 respectively, indicating the increase in epoxidization of both oils. Adding adipic acid to the epoxidized oils at a ratio of 1:10 increases the acid values of SFO and PAO to 11.22 and 6.73 respectively. The existence of multi-acid groups present in synthesized polyacid was confirmed by MALD-ToF-MS. This feature indicates a possible value to the biomaterials development.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry
  4. Liang H, Qin X, Tan CP, Li D, Wang Y
    J Agric Food Chem, 2018 Nov 21;66(46):12361-12367.
    PMID: 30394748 DOI: 10.1021/acs.jafc.8b04804
    Docosahexaenoyl and eicosapentaenoyl ethanolamides (DHEA and EPEA) have physiological functions, including immunomodulation, brain development, and anti-inflammation, but their efficient production is still unresolved. In this study, choline-chloride-based natural deep eutectic solvents are used as media to improve the production of DHEA and EPEA. The water content showed a key effect on the reactant conversion. Adding water to choline chloride-glucose (CG, molar ratio of 5:2) led to a significant increase (13.03% for EPEA and 27.95% for DHEA) in the yields after 1 h. The high yields of EPEA (96.84%) and DHEA (90.06%) were obtained under the optimized conditions [fish oil ethyl esters/ethanolamine molar ratio of 1:2, temperature of 60 °C, 1 h, enzyme loading of 2195 units, and CG containing 8.50% water of 43.30% (w/w, relative to total reactants)]. The products could be easily separated using centrifugation. In summary, the research has the potential to produce fatty acyl ethanolamides.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry
  5. Teoh CY, Ng WK
    J Agric Food Chem, 2013 Jun 26;61(25):6056-68.
    PMID: 23718861 DOI: 10.1021/jf400904j
    The present study aimed to investigate the potential role of dietary petroselinic acid (PSA) in enhancing the n-3 long-chain polyunsaturated fatty acid (LC-PUFA) content in fish tissues. Three isolipidic casein-based diets were formulated to comprise graded levels of PSA (0, 10, or 20% of total fatty acid) with the incremented inclusion of coriander seed oil. Fish growth and nutrient digestibility were not significantly (P > 0.05) influenced by dietary PSA level. In general, dietary PSA affected the fatty acid composition of tilapia tissues and whole-body, which reflected dietary fatty acid ratios. Dietary PSA significantly (P < 0.05) increased β-oxidation, particularly on α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6). This study provided evidence that PSA, a pseudoproduct mimicking the structure of 18:3n-6, did reduce Δ-6 desaturation on 18:2n-6 but, contrary to popular speculation, did not stimulate more Δ-6 desaturase activity on 18:3n-3. The overall Δ-6 desaturase enzyme activity may be suppressed at high dietary levels of PSA. Nevertheless, the n-3 and n-6 LC-PUFA biosynthesis was not significantly inhibited by dietary PSA, indicating that the bioconversion efficiency is not modulated only by Δ-6 desaturase. The deposition of n-3 LC-PUFA in liver and fillet lipids was higher in fish fed PSA-supplemented diets.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry
  6. Ee GC, Lim CM, Lim CK, Rahmani M, Shaari K, Bong CF
    Nat Prod Res, 2009;23(15):1416-23.
    PMID: 19809914 DOI: 10.1080/14786410902757998
    Detailed chemical studies on the roots of Piper sarmentosum and Piper nigrum have resulted in several alkaloids. The roots of P. sarmentosum gave a new aromatic compound, 1-nitrosoimino-2,4,5-trimethoxybenzene (1). Piper nigrum roots gave pellitorine (2), (E)-1-[3',4'-(methylenedioxy)cinnamoyl]piperidine (3), 2,4-tetradecadienoic acid isobutyl amide (4), piperine (5), sylvamide (6), cepharadione A (7), piperolactam D (8) and paprazine (9). Structural elucidation of these compounds was achieved through NMR and MS techniques. Cytotoxic activity screening of the plant extracts indicated some activity.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry
  7. Supardy NA, Ibrahim D, Mat Nor SR, Noordin WNM
    Pol J Microbiol, 2019;68(1):21-33.
    PMID: 31050250 DOI: 10.21307/pjm-2019-003
    Biofouling is a phenomenon that describes the fouling organisms attached to man-made surfaces immersed in water over a period of time. It has emerged as a chronic problem to the oceanic industries, especially the shipping and aquaculture fields. The metal-containing coatings that have been used for many years to prevent and destroy biofouling are damaging to the ocean and many organisms. Therefore, this calls for the critical need of natural product-based antifoulants as a substitute for its toxic counterparts. In this study, the antibacterial and antibiofilm activities of the bioactive compounds of Pseudoalteromonas sp. IBRL PD4.8 have been investigated against selected fouling bacteria. The crude extract has shown strong antibacterial activity against five fouling bacteria, with inhibition zones ranging from 9.8 to 13.7 mm and minimal inhibitory concentrations of 0.13 to 8.0 mg/ml. Meanwhile, the antibiofilm study has indicated that the extract has attenuated the initial and pre-formed biofilms of Vibrio alginolyticus FB3 by 45.37 ± 4.88% and 29.85 ± 2.56%, respectively. Moreover, micrographs from light and scanning electron microscope have revealed extensive structural damages on the treated biofilms. The active fraction was fractionated with chromatographic methods and liquid chromatography-mass spectroscopy analyses has further disclosed the presence of a polyunsaturated fatty acid 4,7,10,13-hexadecatetraenoic acid (C16H24O2). Therefore, this compound was suggested as a potential bioactive compound contributing to the antibacterial property. In conclusion, Pseudoalteromonas sp. IBRL PD4.8 is a promising source as a natural antifouling agent that can suppress the growth of five fouling bacteria and biofilms of V. alginolyticus FB3.

    Biofouling is a phenomenon that describes the fouling organisms attached to man-made surfaces immersed in water over a period of time. It has emerged as a chronic problem to the oceanic industries, especially the shipping and aquaculture fields. The metal-containing coatings that have been used for many years to prevent and destroy biofouling are damaging to the ocean and many organisms. Therefore, this calls for the critical need of natural product-based antifoulants as a substitute for its toxic counterparts. In this study, the antibacterial and antibiofilm activities of the bioactive compounds of Pseudoalteromonas sp. IBRL PD4.8 have been investigated against selected fouling bacteria. The crude extract has shown strong antibacterial activity against five fouling bacteria, with inhibition zones ranging from 9.8 to 13.7 mm and minimal inhibitory concentrations of 0.13 to 8.0 mg/ml. Meanwhile, the antibiofilm study has indicated that the extract has attenuated the initial and pre-formed biofilms of Vibrio alginolyticus FB3 by 45.37 ± 4.88% and 29.85 ± 2.56%, respectively. Moreover, micrographs from light and scanning electron microscope have revealed extensive structural damages on the treated biofilms. The active fraction was fractionated with chromatographic methods and liquid chromatography-mass spectroscopy analyses has further disclosed the presence of a polyunsaturated fatty acid 4,7,10,13-hexadecatetraenoic acid (C16H24O2). Therefore, this compound was suggested as a potential bioactive compound contributing to the antibacterial property. In conclusion, Pseudoalteromonas sp. IBRL PD4.8 is a promising source as a natural antifouling agent that can suppress the growth of five fouling bacteria and biofilms of V. alginolyticus FB3.

    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry
  8. Tou KAS, Rehman K, Ishak WMW, Zulfakar MH
    Drug Dev Ind Pharm, 2019 Sep;45(9):1451-1458.
    PMID: 31216907 DOI: 10.1080/03639045.2019.1628042
    Objective: The aim of this study was to develop a coenzyme Q10 nanoemulsion cream, characterize and to determine the influence of omega fatty acids on the delivery of coenzyme Q10 across model skin membrane via ex vivo and in silico techniques. Methods: Coenzyme Q10 nanoemulsion creams were prepared using natural edible oils such as linseed, evening primrose, and olive oil. Their mechanical features and ability to deliver CoQ10 across rat skin were characterized. Computational docking analysis was performed for in silico evaluation of CoQ10 and omega fatty acid interactions. Results: Linseed, evening primrose, and olive oils each produced nano-sized emulsion creams (343.93-409.86 nm) and exhibited excellent rheological features. The computerized docking studies showed favorable interactions between CoQ10 and omega fatty acids that could improve skin permeation. The three edible-oil nanoemulsion creams displayed higher ex vivo skin permeation and drug flux compared to the liquid-paraffin control cream. The linseed oil formulation displayed the highest skin permeation (3.97 ± 0.91 mg/cm2) and drug flux (0.19 ± 0.05 mg/cm2/h). Conclusion: CoQ10 loaded-linseed oil nanoemulsion cream displayed the highest skin permeation. The highest permeation showed by linseed oil nanoemulsion cream may be due to the presence of omega-3, -6, and -9 fatty acids which might serve as permeation enhancers. This indicated that the edible oil nanoemulsion creams have potential as drug vehicles that enhance CoQ10 delivery across skin.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry*
  9. Ee GC, Lim CM, Rahmani M, Shaari K, Bong CF
    Molecules, 2010 Apr;15(4):2398-404.
    PMID: 20428051 DOI: 10.3390/molecules15042398
    Pellitorine (1), which was isolated from the roots of Piper nigrum, showed strong cytotoxic activities against HL60 and MCT-7 cell lines. Microbial transformation of piperine (2) gave a new compound 5-[3,4-(methylenedioxy)phenyl]-pent-2-ene piperidine (3). Two other alkaloids were also found from Piper nigrum. They are (E)-1-[3',4'-(methylenedioxy)cinnamoyl]piperidine (4) and 2,4-tetradecadienoic acid isobutyl amide (5). These compounds were isolated using chromatographic methods and their structures were elucidated using MS, IR and NMR techniques.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry
  10. Jafari S, Meng GY, Rajion MA, Jahromi MF, Ebrahimi M
    J Agric Food Chem, 2016 Jun 08;64(22):4522-30.
    PMID: 27192629 DOI: 10.1021/acs.jafc.6b00846
    Different solvents (hexane, chloroform, ethyl acetate, butanol, and water) were used to identify the effect of papaya leaf (PL) fractions (PLFs) on ruminal biohydrogenation (BH) and ruminal methanogenesis in an in vitro study. PLFs at a concentration of 0 (control, CON) and 15 mg/250 mg dry matter (DM) were mixed with 30 mL of buffered rumen fluid and were incubated for 24 h. Methane (CH4) production (mL/250 mg DM) was the highest (P < 0.05) for CON (7.65) and lowest for the chloroform fraction (5.41) compared to those of other PLFs at 24 h of incubation. Acetate to propionate ratio was the lowest for PLFs compared to that of CON. Supplementation of the diet with PLFs significantly (P < 0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), and C18:3n-3 (α-linolenic acid; LNA) compared to that of CON after 24 h of incubation. Real time PCR indicated that total protozoa and total methanogen population in PLFs decreased (P < 0.05) compared to those of CON.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry
  11. Harjoh N, Wong TW, Caramella C
    Int J Pharm, 2020 Jun 30;584:119416.
    PMID: 32423875 DOI: 10.1016/j.ijpharm.2020.119416
    Inhaled/oral insulin have been investigated as an alternative to injectable insulin, but are met with unsatisfactory outcomes. Transdermal administration bears several advantages unmet by inhalation/oral delivery, but macromolecular drugs permeation is poor. This study explored microwave to elicit transdermal insulin permeation, and compared against conventional permeation enhancers (fatty acids) in vitro/in vivo. The transdermal insulin permeation was promoted by microwave (2450 MHz/1 mW) > oleic acid (monounsaturated) ~ linoleic acid (double unsaturated bonds). The linolenic acid (triple unsaturated bonds) or combination of microwave/fatty acid reduced skin insulin permeation. Transdermal insulin permeation enhancement was attributed to epidermal lipid bilayer fluidization (CH) and corneocyte shrinkage due to keratin condensation (OH/NH, CO), which had aqueous pore enlarged to facilitate insulin transport. Its reduction by linolenic acid, a molecularly larger and rigid fatty acid with higher surface tension, was due to reduced fatty acid permeation into epidermis and minimal skin microstructural changes. The oleic acid, despite favoured skin microstructural changes, did not provide a remarkably high insulin permeation due to it embedded in skin as hydrophobic shield to insulin transport. Microwave penetrates skin volumetrically with no chemical residue retention. It alone promoted insulin absorption and sustained blood glucose level reduction in vivo.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry*
  12. Khurana RK, Beg S, Burrow AJ, Vashishta RK, Katare OP, Kaur S, et al.
    Eur J Pharm Biopharm, 2017 Dec;121:42-60.
    PMID: 28887099 DOI: 10.1016/j.ejpb.2017.09.001
    The aim of this study was to develop polyunsaturated fatty acid (PUFA) long chain glyceride (LCG) enriched self-nanoemulsifying lipidic nanomicelles systems (SNELS) for augmenting lymphatic uptake and enhancing oral bioavailability of docetaxel and compare its biopharmaceutical performance with a medium-chain fatty acid glyceride (MCG) SNELS. Equilibrium solubility and pseudo ternary phase studies facilitated the selection of suitable LCG and MCG. The critical material attributes (CMAs) and critical process parameters (CPPs) were earmarked using Placket-Burman Design (PBD) and Fractional Factorial Design (FFD) for LCG- and MCG-SNELS respectively, and nano micelles were subsequently optimized using I- and D-optimal designs. Desirability function unearthed the optimized SNELS with Temul <5min, Dnm <100nm, Rel15min >85% and Perm45min >75%. The SNELS demonstrated efficient biocompatibility and energy dependent cellular uptake, reduced P-gp efflux and increased permeability using bi-directional Caco-2 model. Optimal PUFA enriched LCG-SNELS exhibited distinctly superior permeability and absorption parameters during ex vivo permeation, in situ single pass intestinal perfusion, lymphatic uptake and in vivo pharmacokinetic studies over MCG-SNELS.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links