Displaying all 6 publications

Abstract:
Sort:
  1. Chan Ying Fatt
    Dent J Malaysia Singapore, 1969 May;9(1):47-50.
    PMID: 5258334
    Matched MeSH terms: Face/abnormalities
  2. Agbolade O, Nazri A, Yaakob R, Ghani AA, Cheah YK
    Sci Rep, 2021 10 21;11(1):20767.
    PMID: 34675349 DOI: 10.1038/s41598-021-99944-z
    Angelman syndrome (AS) is one of the common genetic disorders that could emerge either from a 15q11-q13 deletion or paternal uniparental disomy (UPD) or imprinting or UBE3A mutations. AS comes with various behavioral and phenotypic variability, but the acquisition of subjects for experiment and automating the landmarking process to characterize facial morphology for Angelman syndrome variation investigation are common challenges. By automatically detecting and annotating subject faces, we collected 83 landmarks and 10 anthropometric linear distances were measured from 17 selected anatomical landmarks to account for shape variability. Statistical analyses were performed on the extracted data to investigate facial variation in each age group. There is a correspondence in the results achieved by relative warp (RW) of the principal component (PC) and the thin-plate spline (TPS) interpolation. The group is highly discriminated and the pattern of shape variability is higher in children than other groups when judged by the anthropometric measurement and principal component.
    Matched MeSH terms: Face/abnormalities*
  3. Sekiguchi F, Tsurusaki Y, Okamoto N, Teik KW, Mizuno S, Suzumura H, et al.
    J Hum Genet, 2019 Dec;64(12):1173-1186.
    PMID: 31530938 DOI: 10.1038/s10038-019-0667-4
    Coffin-Siris syndrome (CSS, MIM#135900) is a congenital disorder characterized by coarse facial features, intellectual disability, and hypoplasia of the fifth digit and nails. Pathogenic variants for CSS have been found in genes encoding proteins in the BAF (BRG1-associated factor) chromatin-remodeling complex. To date, more than 150 CSS patients with pathogenic variants in nine BAF-related genes have been reported. We previously reported 71 patients of whom 39 had pathogenic variants. Since then, we have recruited an additional 182 CSS-suspected patients. We performed comprehensive genetic analysis on these 182 patients and on the previously unresolved 32 patients, targeting pathogenic single nucleotide variants, short insertions/deletions and copy number variations (CNVs). We confirmed 78 pathogenic variations in 78 patients. Pathogenic variations in ARID1B, SMARCB1, SMARCA4, ARID1A, SOX11, SMARCE1, and PHF6 were identified in 48, 8, 7, 6, 4, 1, and 1 patients, respectively. In addition, we found three CNVs including SMARCA2. Of particular note, we found a partial deletion of SMARCB1 in one CSS patient and we thoroughly investigated the resulting abnormal transcripts.
    Matched MeSH terms: Face/abnormalities*
  4. Tekendo-Ngongang C, Owosela B, Fleischer N, Addissie YA, Malonga B, Badoe E, et al.
    Am J Med Genet A, 2020 12;182(12):2939-2950.
    PMID: 32985117 DOI: 10.1002/ajmg.a.61888
    Rubinstein-Taybi syndrome (RSTS) is an autosomal dominant disorder, caused by loss-of-function variants in CREBBP or EP300. Affected individuals present with distinctive craniofacial features, broad thumbs and/or halluces, and intellectual disability. RSTS phenotype has been well characterized in individuals of European descent but not in other populations. In this study, individuals from diverse populations with RSTS were assessed by clinical examination and facial analysis technology. Clinical data of 38 individuals from 14 different countries were analyzed. The median age was 7 years (age range: 7 months to 47 years), and 63% were females. The most common phenotypic features in all population groups included broad thumbs and/or halluces in 97%, convex nasal ridge in 94%, and arched eyebrows in 92%. Face images of 87 individuals with RSTS (age range: 2 months to 47 years) were collected for evaluation using facial analysis technology. We compared images from 82 individuals with RSTS against 82 age- and sex-matched controls and obtained an area under the receiver operating characteristic curve (AUC) of 0.99 (p 
    Matched MeSH terms: Face/abnormalities*
  5. Laver TW, Wakeling MN, Hua JHY, Houghton JAL, Hussain K, Ellard S, et al.
    Clin Endocrinol (Oxf), 2018 Nov;89(5):621-627.
    PMID: 30238501 DOI: 10.1111/cen.13841
    OBJECTIVE: Hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or more rarely feature as part of a syndrome. Screening for mutations in the "syndromic" HH genes is guided by phenotype with genetic testing used to confirm the clinical diagnosis. As HH can be the presenting feature of a syndrome, it is possible that mutations will be missed as these genes are not routinely screened in all newly diagnosed individuals. We investigated the frequency of pathogenic variants in syndromic genes in infants with HH who had not been clinically diagnosed with a syndromic disorder at referral for genetic testing.

    DESIGN: We used genome sequencing data to assess the prevalence of mutations in syndromic HH genes in an international cohort of patients with HH of unknown genetic cause.

    PATIENTS: We undertook genome sequencing in 82 infants with HH without a clinical diagnosis of a known syndrome at referral for genetic testing.

    MEASUREMENTS: Within this cohort, we searched for the genetic aetiologies causing 20 different syndromes where HH had been reported as a feature.

    RESULTS: We identified a pathogenic KMT2D variant in a patient with HH diagnosed at birth, confirming a genetic diagnosis of Kabuki syndrome. Clinical data received following the identification of the mutation highlighted additional features consistent with the genetic diagnosis. Pathogenic variants were not identified in the remainder of the cohort.

    CONCLUSIONS: Pathogenic variants in the syndromic HH genes are rare; thus, routine testing of these genes by molecular genetics laboratories is unlikely to be justified in patients without syndromic phenotypes.

    Matched MeSH terms: Face/abnormalities
  6. Kruszka P, Addissie YA, Tekendo-Ngongang C, Jones KL, Savage SK, Gupta N, et al.
    Am J Med Genet A, 2020 Feb;182(2):303-313.
    PMID: 31854143 DOI: 10.1002/ajmg.a.61461
    Turner syndrome (TS) is a common multiple congenital anomaly syndrome resulting from complete or partial absence of the second X chromosome. In this study, we explore the phenotype of TS in diverse populations using clinical examination and facial analysis technology. Clinical data from 78 individuals and images from 108 individuals with TS from 19 different countries were analyzed. Individuals were grouped into categories of African descent (African), Asian, Latin American, Caucasian (European descent), and Middle Eastern. The most common phenotype features across all population groups were short stature (86%), cubitus valgus (76%), and low posterior hairline 70%. Two facial analysis technology experiments were conducted: TS versus general population and TS versus Noonan syndrome. Across all ethnicities, facial analysis was accurate in diagnosing TS from frontal facial images as measured by the area under the curve (AUC). An AUC of 0.903 (p < .001) was found for TS versus general population controls and 0.925 (p < .001) for TS versus individuals with Noonan syndrome. In summary, we present consistent clinical findings from global populations with TS and additionally demonstrate that facial analysis technology can accurately distinguish TS from the general population and Noonan syndrome.
    Matched MeSH terms: Face/abnormalities*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links