Neopolystoma liewi sp. n. is described from the conjunctival cavity of the Malayan box turtle Cuora amboinensis (Daudin, 1802), in Peninsular Malaysia. This is the first record of Neopolystoma in Malaysia and the fourth polystomatid species described from C. amboinensis. Of the 27 Malayan box turtles examined, 8 were found to be infected. A maximum of 2 parasites per eye and 4 individuals per host was recorded. N. liewi sp. n. differs from all other members of the genus by possessing few and short genital spines and small marginal hooks. The oncomiracidium has 64 ciliated cells arranged symmetrically about the sagittal axis.
We are reporting a case of an eye lesion caused by an adult Brugia malayi. The patient was a 3-year-old Chinese boy from Kemaman District, Terengganu, Peninsular Malaysia. He presented with a one week history of redness and palpebral swelling of his right eye. He claimed that he could see a worm in his right eye beneath the conjunctiva. He had no history of traveling overseas and the family kept dogs at home. He was referred from Kemaman Hospital to the eye clinic of Hospital Tengku Ampuan Afzan, Kuantan, Pahang, Malaysia. On examination by the ophthalmologist, he was found to have a subconjunctival worm in his right eye. Full blood count revealed eosinophilia (10%). Four worm fragments, each about 1 cm long were removed from his right eye under general anesthesia. A thick blood smear stained with Giemsa was positive for microfilariae of Brugia malayi. A Brugia Rapid test done was positive. He was treated with diethylcarbamazine.
Study site: Opthamolagy clinic, Hospital Tengku Ampuan Afzan
Acanthamoeba castellanii belonging to the T4 genotype is an opportunistic pathogen which is associated with blinding eye keratitis and rare but fatal central nervous system infection. A. castellanii pose serious challenges in antimicrobial chemotherapy due to its ability to convert into resistant, hardy shell-protected cyst form that leads to infection recurrence. The fatty acid composition of A. castellanii trophozoites is known to be most abundant in oleic acid which chemically is an unsaturated cis-9-Octadecanoic acid and naturally found in animal and vegetable fats and oils. This study was designed to evaluate antiacanthamoebic effects of oleic acid against trophozoites, cysts as well as parasite-mediated host cell cytotoxicity. Moreover, oleic acid-conjugated silver nanoparticles (AgNPs) were also synthesized and tested against A. castellanii. Oleic acid-AgNPs were synthesized by chemical reduction method and characterized by ultraviolet-visible spectrophotometry, atomic force microscopy, dynamic light scattering analysis, and Fourier transform infrared spectroscopy. Viability, growth inhibition, encystation, and excystation assays were performed with 10 and 5 μM concentration of oleic acid alone and oleic acid-conjugated AgNPs. Bioassays revealed that oleic acid alone and oleic acid-conjugated AgNPs exhibited significant antiamoebic properties, whereas nanoparticle conjugation further enhanced the efficacy of oleic acid. Phenotype differentiation assays also showed significant inhibition of encystation and excystation at 5 μM. Furthermore, oleic acid and oleic acid-conjugated AgNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release. These findings for the first time suggest that oleic acid-conjugated AgNPs exhibit antiacanthamoebic activity that hold potential for therapeutic applications against A. castellanii.