Methods: We used a 128-child ERP net for the ERP experiment. Two types of stimuli were presented as either congruent or incongruent stimuli. Congruent stimuli included a matching auditory sound with an animal image, whereas incongruent stimuli included unmatched animal sounds. A total of 24 age-matched children were recruited in the control (n = 12) and dyslexia (n = 12) groups. Children pressed button '1' or '2' when presented with congruent or incongruent stimuli, respectively. The P300 amplitudes and latencies with topographic voltage distribution were analysed for both groups.
Results: The dyslexia group evoked significantly higher P300 amplitudes at the T4 area than the control group. No significant differences were found in cases of P300 latency. Moreover, the dyslexia group demonstrated a higher intensity of P300 voltage distribution in the right parietal and left occipital areas than the control group.
Conclusion: Post-attentive integration for children with dyslexia is higher and that this integration process implicated the parietal and occipital areas.
OBJECTIVE: This study aims to determine the background of recent studies on wheelchair control based on BCI for disability and map the literature survey into a coherent taxonomy. The study intends to identify the most important aspects in this emerging field as an impetus for using BCI for disability in electric-powered wheelchair (EPW) control, which remains a challenge. The study also attempts to provide recommendations for solving other existing limitations and challenges.
METHODS: We systematically searched all articles about EPW control based on BCI for disability in three popular databases: ScienceDirect, IEEE and Web of Science. These databases contain numerous articles that considerably influenced this field and cover most of the relevant theoretical and technical issues.
RESULTS: We selected 100 articles on the basis of our inclusion and exclusion criteria. A large set of articles (55) discussed on developing real-time wheelchair control systems based on BCI for disability signals. Another set of articles (25) focused on analysing BCI for disability signals for wheelchair control. The third set of articles (14) considered the simulation of wheelchair control based on BCI for disability signals. Four articles designed a framework for wheelchair control based on BCI for disability signals. Finally, one article reviewed concerns regarding wheelchair control based on BCI for disability signals.
DISCUSSION: Since 2007, researchers have pursued the possibility of using BCI for disability in EPW control through different approaches. Regardless of type, articles have focused on addressing limitations that impede the full efficiency of BCI for disability and recommended solutions for these limitations.
CONCLUSIONS: Studies on wheelchair control based on BCI for disability considerably influence society due to the large number of people with disability. Therefore, we aim to provide researchers and developers with a clear understanding of this platform and highlight the challenges and gaps in the current and future studies.
METHODS: Such activity is recorded through various neuroimaging techniques like fMRI, EEG, MEG etc. EEG signals based localization is termed as EEG source localization. The source localization problem is defined by two complementary problems; the forward problem and the inverse problem. The forward problem involves the modeling how the electromagnetic sources cause measurement in sensor space, while the inverse problem refers to the estimation of the sources (causes) from observed data (consequences). Usually, this inverse problem is ill-posed. In other words, there are many solutions to the inverse problem that explains the same data. This ill-posed problem can be finessed by using prior information within a Bayesian framework. This research work discusses source reconstruction for EEG data using a Bayesian framework. In particular, MSP, LORETA and MNE are compared.
RESULTS: The results are compared in terms of variational free energy approximation to model evidence and in terms of variance accounted for in the sensor space. The results are taken for real time EEG data and synthetically generated EEG data at an SNR level of 10dB.
CONCLUSION: In brief, it was seen that MSP has the highest evidence and lowest localization error when compared to classical models. Furthermore, the plausibility and consistency of the source reconstruction speaks to the ability of MSP technique to localize active brain sources.