Displaying all 17 publications

Abstract:
Sort:
  1. Lim MN, Umapathy T, Baharuddin PJ, Zubaidah Z
    Med J Malaysia, 2011 Oct;66(4):335-41.
    PMID: 22299553 MyJurnal
    Transplantation of cultivated limbal epithelium on substrates such as amniotic membrane is an established treatment for severe ocular surface disease with limbal stem cell deficiency. In this study, we adapted an established method to generate sheets of limbal epithelium on amniotic membrane and characterized the cells contained in these sheets and tested them for safety with regard to microbial contamination. Human limbal biopsies were cultivated on denuded amniotic membranes. After three weeks of culture, the phenotypes of cultivated cells were analyzed by immunohistochemistry and real-time RT-PCR for the expression of a panel of specific markers. Cultivated limbal epithelial cell sheets were also analyzed by scanning (SEM) and transmission (TEM) electron microscopy. Sterility tests and mycoplasma assays were conducted for the safety of product. A confluent layer of polygonal cells was formed in 2 weeks and 1-3 stratified layer of cells were observed after three weeks of culture. Cultivated cells were positive for p63, K3, K19, and involucrin but negative for K14, integrin alpha9 and ABCG2 when analyzed by immunohistochemistry. Expression of molecular markers was detectable with real-time RT-PCR. SEM showed multilayer of flat squamous polygonal epithelial cells. Desmosomal and hemidesmosomal attachments were evident. Our study showed that cultivated limbal epithelium consists of limbal progenitors as well as differentiated corneal epithelial cells. SEM and TEM analysis showed cultivated cells demonstrated typical features of corneal epithelium. The risk of contamination is low and can be prevented by culturing the cells in a clean room facility complying to Good Manufacturing Practice standard.
    Matched MeSH terms: Epithelium, Corneal/cytology*; Epithelium, Corneal/ultrastructure; Epithelium, Corneal/chemistry
  2. Nizam MH, Ruszymah BH, Chua KH, Ghafar NA, Hamzah JC
    Med J Malaysia, 2008 Jul;63 Suppl A:111-2.
    PMID: 19025010
    This study was conducted to explore the feasibility of culturing conjunctiva epithelial cells in serum-free and feeder layer-free culture system with regard to the cell morphology and immunocytochemistry of the rabbit bulbar, fornix and palpebral conjunctiva epithelia. The results showed that epithelium cells from all the three conjunctiva regions can be cultured in a serum-free and feeder layer-free environment. We obtained highest epithelial growth from fornix region with minimum invasion of fibroblast cells compared to other area. All cultured cells were stained positive for cytokeratin 19 and MUC5AC and negative for cytokeratin 3. These findings suggested that fornix was a better source of cells for the development of tissue engineered conjunctiva for future clinical application.
    Matched MeSH terms: Epithelium, Corneal/cytology*; Epithelium, Corneal/physiology; Epithelium, Corneal/transplantation
  3. Dasrilsyah AM, Wan Abdul Halim WH, Mustapha M, Tang SF, Kaur B, Ong EY, et al.
    Cornea, 2023 Nov 01;42(11):1395-1403.
    PMID: 37267451 DOI: 10.1097/ICO.0000000000003308
    PURPOSE: The aim of this study was to measure and compare the effect of topical insulin (0.5 units, 4 times per day) versus artificial tears (Vismed, sodium hyaluronate 0.18%, 4 times per day) for the healing of postoperative corneal epithelial defects induced during vitreoretinal surgery in diabetic patients.

    METHODS: This is a double-blind randomized controlled hospital-based study involving diabetic patients with postoperative corneal epithelial defects after vitreoretinal surgery. Diabetic patients were randomized into 2 different groups and received either 0.5 units of topical insulin (DTI) or artificial tears (Vismed, sodium hyaluronate 0.18%; DAT). The primary outcome measured was the rate of corneal epithelial wound healing (mm 2 /h) over a preset interval and time from baseline to minimum size of epithelial defect on fluorescein-stained anterior segment digital camera photography. The secondary outcome measured was the safety of topical insulin 0.5 units and artificial tears (Vismed, sodium hyaluronate 0.18%). Patients were followed up until 3 months postoperation.

    RESULTS: A total of 38 eyes from 38 patients undergoing intraoperative corneal debridement during vitreoretinal surgery with resultant epithelial defects (19 eyes per group) were analyzed. DTI was observed to have a significantly higher healing rate compared with the DAT group at rates over 36 hours ( P = 0.010), 48 hours ( P = 0.009), and 144 hours ( P = 0.009). The rate from baseline to closure was observed to be significantly higher in the DTI group (1.20 ± 0.29) (mm 2 /h) compared with the DAT group (0.78 ± 0.20) (mm 2 /h) as well ( P < 0.001). No adverse effect of topical insulin and artificial tears was reported.

    CONCLUSIONS: Topical insulin (0.5 units, 4 times per day) is more effective compared with artificial tears (Vismed, sodium hyaluronate 0.18%, 4 times per day) for the healing of postoperative corneal epithelial defects induced during vitreoretinal surgery in diabetic patients, without any adverse events.

    Matched MeSH terms: Epithelium, Corneal*
  4. Ling K, Bastion MC
    Int Ophthalmol, 2019 Oct;39(10):2195-2203.
    PMID: 30536185 DOI: 10.1007/s10792-018-1057-1
    PURPOSE: To evaluate the effect of topical sodium hyaluronate (SH) 0.18% treatment on corneal epithelial healing after epithelial debridement in pars plana vitrectomy in diabetic patients.

    METHOD: This is prospective and randomized clinical trial. Our study population included 30 eyes undergoing pars plana vitrectomy that required near total corneal debridement intra-operatively for surgical view. We compared the residual wound and wound healing rate in between 3 groups: 10 diabetic eyes (DMV) on topical SH 0.18%; 10 diabetic eyes (DMC) and 10 non-diabetic eyes (NDM) not treated with topical SH 0.18%. The corneal epithelial wound was measured at 12, 24, 36, 48, 60, 72 and 120 h after the vitrectomy surgery.

    RESULTS: DMC group had corneal wounds that reepithelialization significantly more slowly than in NDM and DMV groups at 12, 24, 36 and 48 h (Mann-Whitney test p corneal epithelial wound, corneal melting or corneal neovascularization was noted.

    CONCLUSION: Diabetic patients on SH 0.18% four times daily for epithelial defect had similar corneal wounds healing rate as non-diabetics. This treatment significantly improved corneal wound healing and accelerated complete corneal wound resurfacing in diabetic patients.

    Matched MeSH terms: Epithelium, Corneal/drug effects*; Epithelium, Corneal/injuries
  5. Choong YY, Arumugam G
    Med J Malaysia, 1999 Dec;54(4):526-7.
    PMID: 11072476
    There are a number of differential diagnoses for crystal deposits in the cornea. With the presence of a corneal epithelial defect, the differential diagnosis can be narrowed down to either infective causes or deposits from topical medications. This report describes a case of crystal deposits in the cornea from the use of Vitamin C eye drops.
    Matched MeSH terms: Epithelium, Corneal/drug effects; Epithelium, Corneal/pathology
  6. Azmi SM, Salih M, Abdelrazeg S, Roslan FF, Mohamed R, Tan JJ, et al.
    Regen Med, 2020 03;15(3):1381-1397.
    PMID: 32253974 DOI: 10.2217/rme-2019-0103
    Aim: As a strategy to improve the outcome of ex vivo cultivated corneal epithelial transplantation, the role of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is investigated in promoting corneal epithelial growth and functions. Materials & methods: Human telomerase-immortalized corneal epithelial cells were characterized and its functions evaluated by scratch migration assay, cellular senescence, HLA expression and spheres formation with hUC-MSC. Results: Expression of corneal epithelial markers was influenced by the duration and method of co-culture. Indirect co-culture improved cellular migration and delayed senescence when treated after 3 and 5 days. hUC-MSC downregulated expression of HLA Class I and II in IFN-γ-stimulated human telomerase-immortalized corneal epithelial cells. Conclusion: hUC-MSC promote corneal epithelial growth and functions after treatment with hUC-MSC.
    Matched MeSH terms: Epithelium, Corneal/cytology*; Epithelium, Corneal/metabolism
  7. Masrudin SS, Ghafar NA, Saidi M, Aminuddin BS, Rahmat A, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:109-10.
    PMID: 19025009
    The present work was to determine the development and re-epithelization of bilayered corneal construct (BCC) in vitro and in vivo using scanning electron microscopy (SEM). The in vitro BCC was transplanted to the rabbit's eye and after 90 days the BCC was harvested and analyzed. The corneas were processed for morphology studies. The result indicates that the BICC that was transplanted for 90 days showed good development and re-epithelization of epithelial layer similar to the normal cornea.
    Matched MeSH terms: Epithelium, Corneal/physiology*
  8. Azmi MF, Ghafar NA, Hamzah JC, Luan NS, Hui CK
    Wounds, 2017 Nov;29(11):327-332.
    PMID: 28678731
    OBJECTIVE: The aim of this study is to investigate the potential bene ts of Gelam honey (GH) in promoting proliferation of ex vivo cor- neal epithelial cells (CECs) and its effects on the phenotypical features.

    MATERIALS AND METHODS: Corneal epithelial cells were isolated from the corneas of rabbits (n = 6). The optimal dose of GH for CEC proliferation in both basal medium (BM) and cornea medium (CM) was determined via MTT (3-[4, 5-dimethyl thiazolyl-2]-2, 5-diphenyl tetrazolium bro- mide) assay. Morphology, gene and protein expressions, and cell cycle analysis of CECs were evaluated via phase contrast microscopy, real- time polymerase chain reaction, immunocytochemistry, and ow cytom- etry, respectively.

    RESULTS: Corneal epithelial cells cultured in 0.0015% GH-supplemented media (BM + 0.0015% GH; CM + 0.0015% GH) demonstrated optimal proliferative capacity with normal polygonal- shaped morphology. Gelam honey potentiates cytokeratin 3 (CK3) gene expression in accordance with the cytoplasmic CK3 protein expression while retaining normal cell cycle of CECs.

    CONCLUSION: Culture media treated with 0.0015% GH increased CEC proliferation while preserving its phenotypical features. This study demonstrated the potential devel- opment of GH-based topical treatment for super cial corneal injury.

    Matched MeSH terms: Epithelium, Corneal/drug effects*
  9. Ho FL, Salowi MA, Bastion MC
    Asia Pac J Ophthalmol (Phila), 2017;6(5):429-434.
    PMID: 28379650 DOI: 10.22608/APO.2016198
    PURPOSE: To investigate the effects of postoperative eye patching on clear corneal incision architecture in phacoemulsification.

    DESIGN: A single-center, randomized controlled trial.

    METHODS: A total of 132 patients with uncomplicated phacoemulsification were randomly allocated to the intervention or control group. The intervention group received postoperative eye patching for approximately 18 hours, whereas the control group received eye shield. The clear corneal incision architecture was examined postoperatively at 2 hours, 1 day, and 7 days after surgery using optical coherence tomography.

    RESULTS: Epithelial gaping was significantly reduced on postoperative day 1 in the intervention group (52.4%) compared with control (74.2%) (P = 0.01). No differences were found for other architectural defects. Descemet membrane detachment was associated with lower intraocular pressure on postoperative day 7 (P = 0.02). Presence of underlying diabetes mellitus did not seem to influence architectural defects.

    CONCLUSIONS: Postoperative eye patching facilitated epithelial healing and reduced the occurrence of epithelial gaping on postoperative day 1. It may play a role in protecting and improving corneal wounds during the critical immediate postoperative period.

    Matched MeSH terms: Epithelium, Corneal/pathology
  10. Ruszymah BH, Chowdhury SR, Manan NA, Fong OS, Adenan MI, Saim AB
    J Ethnopharmacol, 2012 Mar 27;140(2):333-8.
    PMID: 22301444 DOI: 10.1016/j.jep.2012.01.023
    Centella asiatica is a traditional herbal medicine that has been shown to have pharmacological effect on skin wound healing, and could be potential therapeutic agent for corneal epithelial wound healing.
    Matched MeSH terms: Epithelium, Corneal/cytology; Epithelium, Corneal/drug effects*
  11. Bastion ML, Ling KP
    Med J Malaysia, 2013 Jun;68(3):208-16.
    PMID: 23749008 MyJurnal
    PURPOSE: To investigate whether topical insulin improves healing rate of corneal epithelial erosions induced during vitreoretinal surgery in diabetics.
    METHODS: We retrospectively reviewed case notes and serial post-operative photographs of 15 eyes of 14 patients who had corneal epithelial debridement performed during various vitreoretinal surgeries to improve one surgeon's view over a 10 month period in 2010.
    RESULTS: Three groups were identified: DTI, comprising diabetics who received topical insulin 1 unit qds postoperatively (n=5); DCT comprising diabetics treated with conventional post-operative medications only (n=5) and NDCT comprising non diabetic patients on conventional post operative therapy (n=5). Only eyes in which the corneal epithelial defect had been serially photographed at time, t= 0, 12, 24, 36, 48, 60, 72 and 120 hours following commencement of topical medications were included. The size of the defect was calculated using local software. DTI eyes had a significantly smaller defect size at t= 24 (p=0.009), 36 (p=0.009), 48 (p=0.015) and 60 hours (p=0.005) compared to DCT eyes and had no statistical difference from NDCT eyes at all times in the Mann Whitney U analysis (p>0.05). In the diabetic operated bilaterally, the insulin treated eye re-epithelialised by 48 hours whereas fellow eye treated conventionally re-epithelialised in 72 hours.
    CONCLUSIONS: Topical insulin or insulin eye drops 1 unit qds may be applied to the corneal surface to normalize the rate of healing of epithelial defects in diabetic patients undergoing epithelial debridement to improve the surgeon's view.
    Matched MeSH terms: Epithelium, Corneal
  12. Yusof NZ, Abd Gani SS, Azizul Hasan ZA, Idris Z
    Int J Toxicol, 2018 05 07;37(4):335-343.
    PMID: 29734825 DOI: 10.1177/1091581818773979
    Many types of phytochemicals have been found to be present in oil palm leaf and could potentially be used as functional ingredients for skincare product. However, as of today, there is no published report on hazard identification and safety assessment of oil palm ( Elaeis guineensis) leaf extract (OPLE), particularly on skin and eye irritation. In this study, potential hazard of OPLE on skin and eye irritation was evaluated as an initial step to the safety assessment of OPLE. In vitro cell viability study of OPLE on normal human dermal fibroblasts showed that OPLE was nontoxic to the cells with percentage viability more than 90% after 24 and 48 hours of incubation. Skin irritation potential of OPLE was evaluated using in vitro SkinEthic reconstructed human epidermis (RHE) model (Organization for Economic Cooperation and Development [OECD] Test Guideline 439, 2015), while eye irritation potential was evaluated using in vitro SkinEthic Human corneal epithelium (HCE) model (OECD test guideline 492, 2017). Hazard identification results showed that OPLE at 1%, 5%, and 10% (wt/wt) was classified as nonirritant to the skin and eye where mean tissue viabilities of SkinEthic RHE and SkinEthic HCE were more than 50% and 60%, respectively. Therefore, we recommend a further safety assessment, such as human patch testing, to confirm the nonirritant of OPLE.
    Matched MeSH terms: Epithelium, Corneal
  13. Lim MN, Hussin NH, Othman A, Umapathy T, Baharuddin P, Jamal R, et al.
    Mol Vis, 2012;18:1289-300.
    PMID: 22665977
    The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However, little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated.
    Matched MeSH terms: Epithelium, Corneal/cytology*; Epithelium, Corneal/metabolism
  14. Tan AK, Pall S
    Med J Malaysia, 2011 Oct;66(4):284-5.
    PMID: 22299542 MyJurnal
    Matched MeSH terms: Epithelium, Corneal/cytology*
  15. Shaharuddin B, Ahmad S, Md Latar N, Ali S, Meeson A
    Stem Cells Transl Med, 2017 03;6(3):761-766.
    PMID: 28297580 DOI: 10.5966/sctm.2016-0175
    Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue. Stem Cells Translational Medicine 2017;6:761-766.
    Matched MeSH terms: Epithelium, Corneal/cytology*
  16. Tan JJ, Azmi SM, Yong YK, Cheah HL, Lim V, Sandai D, et al.
    PLoS One, 2014;9(5):e96800.
    PMID: 24802273 DOI: 10.1371/journal.pone.0096800
    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.
    Matched MeSH terms: Epithelium, Corneal/cytology*
  17. Lim JJ, Ong YM, Wan Zalina MZ, Choo MM
    Ocul Immunol Inflamm, 2018;26(2):187-193.
    PMID: 28622058 DOI: 10.1080/09273948.2017.1327604
    Matched MeSH terms: Epithelium, Corneal/pathology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links