Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Leisegang K, Dutta S
    Andrologia, 2021 Feb;53(1):e13595.
    PMID: 32330362 DOI: 10.1111/and.13595
    Alongside an increasing prevalence of couple and male infertility, evidence suggests there is a global declining trend in male fertility parameters over the past few decades. This may, at least in part, be explained through detrimental lifestyle practices and exposures. These include alcohol and tobacco consumption, use of recreational drugs (e.g., cannabis, opioids and anabolic steroids), poor nutritional habits, obesity and metabolic syndrome, genital heat stress (e.g., radiation exposure through cell phones and laptops, prolonged periods of sitting, tight-fitting underwear and recurrent hot baths or saunas), exposure to endocrine-disrupting chemicals (e.g., pesticide residue, bisphenol A, phthalates and dioxins) and psychological stress. This review discusses these lifestyle practices and the current evidence associated with male infertility. Furthermore, known mechanisms of action are also discussed for each of these. Common mechanisms associated with a reduction in spermatogenesis and/or steroidogenesis due to unfavourable lifestyle practices include inflammation and oxidative stress locally or systemically. It is recommended that relevant lifestyle practices are investigated in clinical history of male infertility cases, particularly in unexplained or idiopathic male infertility. Appropriate modification of detrimental lifestyle practices is further suggested and recommended in the management of male infertility.
    Matched MeSH terms: Endocrine Disruptors*
  2. Kamaraj M, Suresh Babu P, Shyamalagowri S, Pavithra MKS, Aravind J, Kim W, et al.
    J Environ Manage, 2024 Feb;351:119830.
    PMID: 38141340 DOI: 10.1016/j.jenvman.2023.119830
    Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, β-Cyclodextrin (βCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines βCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising βCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses βCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of βCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of βCD polymer composite membranes.
    Matched MeSH terms: Endocrine Disruptors*
  3. Hemavarshini S, Kalyaan VLV, Gopinath S, Kamaraj M, Aravind J, Pandiaraj S, et al.
    Environ Geochem Health, 2024 Aug 21;46(10):386.
    PMID: 39167247 DOI: 10.1007/s10653-024-02154-5
    In the era dominated by plastic, the widespread use of plastic in our daily lives has led to a growing accumulation of its degraded byproducts, such as microplastics and plastic additives like Bisphenol A (BPA). BPA is recognized as one of the earliest man-made substances that exhibit endocrine-disrupting properties. It is frequently employed in the manufacturing of epoxy resins, polycarbonates, dental fillings, food storage containers, infant bottles, and water containers. BPA is linked to a range of health issues including obesity, diabetes, chronic respiratory illnesses, cardiovascular diseases, and reproductive abnormalities. This study examines the bacterial bioremediation of the BPA, which is found in many sources and is known for its hazardous effects on the environment. The metabolic pathways for the breakdown of BPA in important bacterial strains were hypothesized based on the observed altered intermediate metabolites during the degradation of BPA. This review discusses the enzymes and genes involved in the bacterial degradation of BPA. The utilization of naturally occurring microorganisms is the most efficient and cost-effective method due to their selectivity of strains, ensuring sustainability.
    Matched MeSH terms: Endocrine Disruptors/metabolism
  4. Li B, Wu G, Yang X, Li Z, Albasher G, Alsultan N, et al.
    Environ Res, 2023 Jul 15;229:115781.
    PMID: 37076035 DOI: 10.1016/j.envres.2023.115781
    Endocrine disrupting chemicals (EDCs) have been extensively explored due to their harmful effects on individual health and the environment by interfering with hormone activity and disrupting the endocrine system. However, their relationship with essential trace elements remains uncertain. This research aimed to investigate the possible correlation between essential trace elements and toxic metals, including cadmium (Cd), and lead (Pb) in children aged 1-5 years with various infectious diseases, including gastrointestinal disorders, typhoid fever, and pneumonia. The study was conducted on biological testing and specimen (scalp hair and whole blood) of diseased and non-diseased children of the same residential area and referent/control age-matched children from developed cities consuming domestically treated water. The media of biological samples were oxidized by an acid mixture before being analyzed by atomic absorption spectrophotometry. The accuracy and validity of the methodology were verified through accredited reference material from scalp hair and whole blood sample. The study results revealed that diseased children had lower mean values of essential trace elements (iron, copper, and zinc) in both scalp hair and blood, except for copper, which was found to be higher in blood samples of diseased children. This implies that the deficiency of essential residue and trace elements in children from rural areas who consume groundwater is linked to various infectious diseases. The study highlights the need for more human biomonitoring of EDCs to better comprehend their non-classical toxic properties and their concealed costs on human health. The findings suggest that exposure to EDCs could be associated with unfavorable health outcomes and emphasizes the need for future regulatory policies to minimize exposure and safeguard the health of current and forthcoming generations of children. Furthermore, the study highlights the implication of essential trace elements in maintaining good health and their potential correlation with toxic metals in the environment.
    Matched MeSH terms: Endocrine Disruptors*
  5. Wu Y, Liu Y, Kamyab H, Rajasimman M, Rajamohan N, Ngo GH, et al.
    Environ Res, 2023 Sep 01;232:116363.
    PMID: 37295587 DOI: 10.1016/j.envres.2023.116363
    Due to their widespread occurrence and detrimental effects on human health and the environment, endocrine-disrupting hazardous chemicals (EDHCs) have become a significant concern. Therefore, numerous physicochemical and biological remediation techniques have been developed to eliminate EDHCs from various environmental matrices. This review paper aims to provide a comprehensive overview of the state-of-the-art remediation techniques for eliminating EDHCs. The physicochemical methods include adsorption, membrane filtration, photocatalysis, and advanced oxidation processes. The biological methods include biodegradation, phytoremediation, and microbial fuel cells. Each technique's effectiveness, advantages, limitations, and factors affecting their performance are discussed. The review also highlights recent developments and future perspectives in EDHCs remediation. This review provides valuable insights into selecting and optimizing remediation techniques for EDHCs in different environmental matrices.
    Matched MeSH terms: Endocrine Disruptors*
  6. Sukatis FF, Looi LJ, Lim HN, Abdul Rahman MB, Mohd Zaki MR, Aris AZ
    Environ Pollut, 2024 Jan 15;341:122980.
    PMID: 37992953 DOI: 10.1016/j.envpol.2023.122980
    The presence of emerging water pollutants such as endocrine-disrupting compounds (EDCs), including 17-ethynylestradiol (EE2), bisphenol A (BPA), and perfluorooctanoic acid (PFOA), in contaminated water sources poses significant environmental and health challenges. This study aims to address this issue by investigating the efficiency of novel calcium-based metal-organic frameworks, known as mixed-linker calcium-based metal-organic frameworks (Ca-MIX), in adsorbing these endocrine-disrupting compounds. This study analyzed the influence of influent concentration, bed height, and flow rate on pollutant removal, with bed height emerging as a crucial factor. From the breakthrough curves, it was determined that the column maximum adsorption capacities followed the order of 17-ethynylestradiol (101.52 μg/g; 40%) > bisphenol A (99.07 μg/g; 39%) > perfluorooctanoic acid (81.28 μg/g; 32%). Three models were used to predict the adsorption process, with the Yan model outperforming the other models. This suggests the potential of mixed-linker calcium-based metal-organic frameworks for removing endocrine-disrupting compounds from water, using the Yan model as an effective predictor. Overall, this study provides valuable insights for the development of effective water treatment methods using mixed-linker calcium-based metal-organic frameworks to remove endocrine-disrupting compounds from contaminated water sources.
    Matched MeSH terms: Endocrine Disruptors*
  7. Abdul Karim N', Wan Ibrahim WA, Sanagi MM, Abdul Keyon AS
    Electrophoresis, 2016 10;37(20):2649-2656.
    PMID: 27434368 DOI: 10.1002/elps.201600207
    Online preconcentration using electrokinetic supercharging (EKS) was proposed to enhance the sensitivity of separation for endocrine disrupting chemical (methylparaben (MP)) and phenolic pollutants (2-nitrophenol (NP) and 4-chlorophenol (CP)) in water sample. Important EKS and separation conditions such as the concentration of BGE; the choice of terminating electrolyte (TE); and the injection time of leading electrolyte (LE), sample, and TE were optimized. The optimum EKS-CE conditions were as follows: BGE comprising of 12 mM sodium tetraborate pH 10.1, 100 mM sodium chloride as LE hydrodynamically injected at 50 mbar for 30 s, electrokinetic injection (EKI) of sample at -3 kV for 200 s, and 100 mM CHES as TE hydrodynamically injected at 50 mbar for 40 s. The separation was conducted at negative polarity mode and UV detection at 214 nm. Under these conditions, the sensitivity of analytes was enhanced from 100- to 737-fold as compared to normal CZE with hydrodynamic injection, giving LOD of 4.89, 5.29, and 53 μg/L for MP, NP and CP, respectively. The LODs were adequate for the analysis of NP and CP in environmental water sample having concentration at or lower than their maximum admissible concentration limit (240 and 2000 μg/L for NP and CP). The LOD of MP can be suitable for the analysis of MP exists at mid-microgram per liter level, even though the LOD was slightly higher than the concentration usually found in water samples (from ng/L to 1 μg/L). The method repeatabilities (%RSD) were in the range of 1.07-2.39% (migration time) and 8.28-14.0% (peak area).
    Matched MeSH terms: Endocrine Disruptors/analysis; Endocrine Disruptors/isolation & purification*; Endocrine Disruptors/chemistry
  8. Ismail NAH, Wee SY, Kamarulzaman NH, Aris AZ
    Environ Pollut, 2019 Jun;249:1019-1028.
    PMID: 31146308 DOI: 10.1016/j.envpol.2019.03.089
    Emerging pollutants known as endocrine-disrupting compounds (EDCs) are a contemporary global issue, especially in aquatic ecosystems. As aquaculture production through mariculture activities in Malaysia supports food production, the concentration and distribution of EDCs in estuarine water ecosystems may have changed. Therefore, this current study aims to prepare a suitable and reliable method for application on environmental samples. Besides, this study also presented the occurrence of EDCs pollutant in Pulau Kukup, Johor, where the biggest and most active mariculture site in Malaysia takes place. Analytical methods based on a combination of solid-phase extraction with liquid chromatography tandem mass spectrometry (Solid-phase extraction (SPE)-LC-MS/MS) have been modified and optimised to examine the level of targeted EDCs contaminant. In the current study, this method displays high extraction recovery for targeted EDCs, ranging from 92.02% to 132.32%. The highest concentration detected is diclofenac (<0.47-79.89 ng/L) followed by 17β-estradiol (E2) (<5.28-31.43 ng/L) and 17α-ethynylestradiol (EE2) (<0.30-7.67 ng/L). The highest percentage distribution for the targeted EDCs in the current study is diclofenac, followed by EE2 and dexamethasone with the percentages of 99.44%, 89.53% and 73.23%, respectively. This current study can be a baseline assessment to understand the pollution profile of EDCs and their distribution in the estuarine water of the mariculture site throughout the world, especially in Malaysia. Owing to the significant concentration of targeted EDCs detected in water samples, the need for further monitoring in the future is required.
    Matched MeSH terms: Endocrine Disruptors/analysis*
  9. Debabrata P, Sivakumar M
    Chemosphere, 2018 Aug;204:101-108.
    PMID: 29655102 DOI: 10.1016/j.chemosphere.2018.04.014
    Dicofol, an extensively used organochlorine pesticide and a recommended Stockholm convention persistent organic pollutant (POP) candidate is well known for its endocrine disruptive properties. The sonochemical degradation of Dicofol in aqueous media has been investigated using a 20-kHz probe type sonicator with power inputs from 150 to 450 W. The degradation rate was determined as a function of concentration of Dicofol, solution pH, bulk phase temperature, ultrasonic power density and H2O2 addition. At optimum operating conditions, the pseudo-first-order degradation rate constant (k) was determined to be 0.032 min-1 and the extent of degradation was found to be 86% within 60 min of ultrasound treatment. High performance liquid chromatography (HPLC) and Gas chromatography coupled with mass spectroscopy (GC-MS) analysis indicated the presence of degraded products. The obtained results of Dicofol degradation and control experiments in the presence of H2O2 and radical scavenger test suggest thermal decomposition along with radical attack at bubble-vapor interface to be the dominant degradation pathway. Sonochemical treatment is effective and promising for successful removal of harmful pesticides such as Dicofol and superior removal efficiency for other POPs is expected in the near future with the successful implementation of ultrasound-based wastewater treatment.
    Matched MeSH terms: Endocrine Disruptors/chemistry
  10. Hadibarata T, Kristanti RA, Mahmoud AH
    J Water Health, 2020 Feb;18(1):38-47.
    PMID: 32129185 DOI: 10.2166/wh.2019.100
    The study was performed to examine the occurrence of endocrine disrupting chemicals (EDCs), including four steroid estrogens, one plasticizer, and three preservatives in the Mahakam River, Indonesia. The physicochemical analysis of river water and sediment quality parameters were determined as well as the concentration of EDCs. The range of values for pH, total dissolved solids (TDS), dissolved oxygen (DO), biochemical oxygen demand (BOD), total suspended solids (TSS), nitrate, ammonium, phosphate, and oil/grease in river water and sediment were higher than recommended limits prescribed by the World Health Organization's Guidelines for Drinking-water Quality (GDWQ). Bisphenol A (BPA) was the most widely found EDC with the highest concentration level at 652 ng/L (mean 134 ng/L) in the river water and ranged from ND (not detected) to 952 ng/L (mean 275 ng/L) in the sediment. Correlation analysis to investigate the relationship between the EDCs' concentrations in water and sediment also revealed a significant correlation (R2 = 0.93) between the EDCs' concentrations. High concentrations of EDCs are found in urban and residential areas because these compounds are commonly found in both human and animal bodies, resulting in the disposal of EDCs into canals and rivers in urban and suburban areas, as well as livestock manure and waste that is generated from intensive livestock farming around the suburban area.
    Matched MeSH terms: Endocrine Disruptors/analysis*
  11. Wee SY, Haron DEM, Aris AZ, Yusoff FM, Praveena SM
    Environ Geochem Health, 2020 Oct;42(10):3247-3261.
    PMID: 32328897 DOI: 10.1007/s10653-020-00565-8
    Active pharmaceutical ingredients (APIs) are typical endocrine disruptors found in common pharmaceuticals and personal care products, which are frequently detected in aquatic environments, especially surface water treated for drinking. However, current treatment technologies are inefficient for removing emerging endocrine disruptors, leading to the potential contamination of tap water. This study employed an optimized analytical method comprising solid-phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) to detect APIs in tap water in Putrajaya, Malaysia. Several therapeutic classes of pharmaceuticals and personal care products, including anti-inflammatory drugs (dexamethasone and diclofenac), antibiotics (sulfamethoxazole and triclosan), antiepileptics (primidone), antibacterial agents (ciprofloxacin), beta-blockers (propranolol), psychoactive stimulants (caffeine), and antiparasitic drugs (diazinon), were detected in the range of 
    Matched MeSH terms: Endocrine Disruptors/analysis*
  12. Kamishima M, Hattori T, Suzuki G, Matsukami H, Komine C, Horii Y, et al.
    J Appl Toxicol, 2018 05;38(5):649-655.
    PMID: 29271492 DOI: 10.1002/jat.3569
    Exposure to endocrine-disrupting chemicals may adversely affect animals, particularly during development. Tris(1,3-dichloroisopropyl) phosphate (TDCIPP) is an organophosphate with anti-androgen function in vitro that is present in indoor dust at relatively high concentrations. In male rats, androgens are necessary for the development of reproductive organs, as well as the endocrine and central nervous systems. However, we currently do not know the exact effects of TDCIPP exposure through suckling on subsequent reproductive behavior in males. Here, we show that TDCIPP exposure (25-250 mg kg-1 via oral administration over 28 consecutive days post-birth) suppressed male sexual behavior and reduced testes size. These changes were dose-dependent and appeared first in adults rather than in juveniles. These results demonstrate that TDCIPP exposure led to normal body growth and appearance in juveniles, but disrupted the endocrine system and physiology in adults. Therefore, assays should be performed using adult animals to ensure accuracy, and to confirm the influence of chemical substances given during early mammalian life.
    Matched MeSH terms: Endocrine Disruptors/toxicity*
  13. Wong HL, Garthwaite DG, Ramwell CT, Brown CD
    Environ Sci Pollut Res Int, 2019 Jan;26(2):1642-1653.
    PMID: 30448946 DOI: 10.1007/s11356-018-3676-5
    Occupational exposure to pesticide mixtures comprising active substance(s) and/or co-formulant(s) with known/possible endocrine-disrupting activity was assessed using long-term activity records for 50 professional operators representing arable and orchard cropping systems in Greece, Lithuania, and the UK. Exposure was estimated using the harmonised Agricultural Operator Exposure Model, and risk was quantified as a point of departure index (PODI) using the lowest no observed (adverse) effect level. Use of substances with known/possible endocrine activity was common, with 43 of the 50 operators applying at least one such active substance on more than 50% of spray days; at maximum, one UK operator sprayed five such active substances and 10 such co-formulants in a single day. At 95th percentile, total exposure was largest in the UK orchard system (0.041 × 10-2 mg kg bw-1 day-1) whereas risk was largest in the Greek cropping systems (PODI 0.053 × 10-1). All five cropping systems had instances indicating potential for risk when expressed at a daily resolution (maximum PODI 1.2-10.7). Toxicological data are sparse for co-formulants, so combined risk from complex mixtures of active substances and co-formulants may be larger in reality.
    Matched MeSH terms: Endocrine Disruptors/analysis*
  14. Wee SY, Aris AZ
    Environ Int, 2017 09;106:207-233.
    PMID: 28552550 DOI: 10.1016/j.envint.2017.05.004
    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water.
    Matched MeSH terms: Endocrine Disruptors/toxicity*
  15. Ahmad NA, Goh PS, Zakaria NAS, Naim R, Abdullah MS, Ismail AF, et al.
    Chemosphere, 2024 Apr;353:141108.
    PMID: 38423147 DOI: 10.1016/j.chemosphere.2024.141108
    Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.
    Matched MeSH terms: Endocrine Disruptors*
  16. Alofe O, Kisanga E, Inayat-Hussain SH, Fukumura M, Garcia-Milian R, Perera L, et al.
    Environ Int, 2019 10;131:104969.
    PMID: 31310931 DOI: 10.1016/j.envint.2019.104969
    Environmental and occupational exposure to industrial chemicals has been linked to toxic and carcinogenic effects in animal models and human studies. However, current toxicology testing does not thoroughly explore the endocrine disrupting effects of industrial chemicals, which may have low dose effects not predicted when determining the limit of toxicity. The objective of this study was to evaluate the endocrine disrupting potential of a broad range of chemicals used in the petrochemical sector. Therefore, 139 chemicals were classified for reproductive toxicity based on the United Nations Globally Harmonized System for hazard classification. These chemicals were evaluated in PubMed for reported endocrine disrupting activity, and their endocrine disrupting potential was estimated by identifying chemicals with active nuclear receptor endpoints publicly available databases. Evaluation of ToxCast data suggested that these chemicals preferentially alter the activity of the estrogen receptor (ER). Four chemicals were prioritized for in vitro testing using the ER-positive, immortalized human uterine Ishikawa cell line and a range of concentrations below the reported limit of toxicity in humans. We found that 2,6-di-tert-butyl-p-cresol (BHT) and diethanolamine (DEA) repressed the basal expression of estrogen-responsive genes PGR, NPPC, and GREB1 in Ishikawa cells, while tetrachloroethylene (PCE) and 2,2'-methyliminodiethanol (MDEA) induced the expression of these genes. Furthermore, low-dose combinations of PCE and MDEA produced additive effects. All four chemicals interfered with estradiol-mediated induction of PGR, NPPC, and GREB1. Molecular docking demonstrated that these chemicals could bind to the ligand binding site of ERα, suggesting the potential for direct stimulatory or inhibitory effects. We found that these chemicals altered rates of proliferation and regulated the expression of cell proliferation associated genes. These findings demonstrate previously unappreciated endocrine disrupting effects and underscore the importance of testing the endocrine disrupting potential of chemicals in the future to better understand their potential to impact public health.
    Matched MeSH terms: Endocrine Disruptors/pharmacology*; Endocrine Disruptors/chemistry
  17. Lam SM, Sin JC, Abdullah AZ, Mohamed AR
    Environ Technol, 2013 May-Jun;34(9-12):1097-106.
    PMID: 24191441
    In the work presented here, photocatalytic systems using TiO2 and ZnO suspensions were utilized to evaluate the degradation of resorcinol (ReOH). The effects of catalyst concentration and solution pH were investigated and optimized using multivariate analysis based on response surface methodology. The results indicated that ZnO showed greater degradation and mineralization activities compared to TiO2 under optimized conditions. Using certain radical scavengers, a positive hole, together with the participation of hydroxyl radicals, were the oxidative species responsible for ReOH degradation on TiO2 whereas, the ZnO photocatalysis occurred principally via hydroxyl radicals. Some hitherto unreported pathway intermediates of ReOH degradation were identified using gas chromatography-mass spectrometry. A tentative reaction mechanism for the formation of these intermediates was proposed. Moreover, the figure-of-merit electrical energy per order was employed to estimate the electrical energy consumption.
    Matched MeSH terms: Endocrine Disruptors/analysis; Endocrine Disruptors/chemistry*
  18. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Talanta, 2017 Oct 01;173:51-59.
    PMID: 28602191 DOI: 10.1016/j.talanta.2017.05.064
    Estuary sediments are one of the important components of coastal ecosystems and have been regarded as a sink for various types of organic pollutants. Organic pollutants such as endocrine disrupting compounds (EDCs) which have been associated with various environmental and human health effects were detected in the estuary sediment at trace level. Considering various interferences that may exist in the estuarine sediment, a sensitive and selective method, capable of detecting multiclass EDC pollutants at the trace levels, needs to be developed and optimized to be applied for environmental analysis. A combination of Soxhlet extraction followed by offline solid phase extraction (SPE) cleaned up with detection based on LC triple quadrupole MS was optimized and validated in this study. The targeted compounds consisted of ten multiclass EDCs, namely, diclofenac, primidone, bisphenol A, estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), 4-octylphenol (4-OP), 4-nonylphenol (4-NP), progesterone, and testosterone. The method showed high extraction efficiency with percentage of recovery from 78% to 108% and excellent sensitivity with detection limit between 0.02ngg-1 and 0.81ngg-1. Excellent linearity from 0.991 to 0.999 was achieved for the developed compounds and the relative standard deviation was less than 18%, an indication of good precision analysis. Evaluation of the matrix effects showed ionization suppression for all the developed compounds. Verification of the method was carried out by analyzing the estuarine sediment collected from Langat River. The analyzed estuarine sediments showed a trace concentration of diclofenac, bisphenol A, progesterone, testosterone, primidone, and E1. However, E2, EE2, 4-OP, and 4-NP were below the method's detection limit. Diclofenac exhibited the highest concentration at 2.67ngg-1 followed by bisphenol A (1.78ngg-1) while E1 showed the lowest concentration at 0.07ngg-1.
    Matched MeSH terms: Endocrine Disruptors/analysis*; Endocrine Disruptors/isolation & purification*
  19. Ismail NAH, Wee SY, Aris AZ
    Chemosphere, 2017 Dec;188:375-388.
    PMID: 28892772 DOI: 10.1016/j.chemosphere.2017.08.150
    Fishes are a major protein food source for humans, with a high economic value in the aquaculture industry. Because endocrine disrupting compounds (EDCs) have been introduced into aquatic ecosystems, the exposure of humans and animals that depend on aquatic foods, especially fishes, should be seriously considered. EDCs are emerging pollutants causing global concern because they can disrupt the endocrine system in aquatic organisms, mammals, and humans. These pollutants have been released into the environment through many sources, e.g., wastewater treatment plants, terrestrial run-off (industrial activities, pharmaceuticals, and household waste), and precipitation. The use of pharmaceuticals, pesticides, and fertilizers for maintaining and increasing fish health and growth also contributes to EDC pollution in the water body. Human and animal exposure to EDCs occurs via ingestion of contaminated matrices, especially aquatic foodstuffs. This paper aims to review human EDC exposure via fish consumption. In respect to the trace concentration of EDCs in fish, types of instrument and clean-up method are of great concerns.
    Matched MeSH terms: Endocrine Disruptors/analysis; Endocrine Disruptors/toxicity*
  20. Adeel M, Zain M, Fahad S, Rizwan M, Ameen A, Yi H, et al.
    Environ Sci Pollut Res Int, 2018 Dec;25(36):36712-36723.
    PMID: 30377972 DOI: 10.1007/s11356-018-3588-4
    Since the inception of global industrialization, the growth of steroid estrogens becomes a matter of emerging serious concern for the rapid population. Steroidal estrogens are potent endocrine-upsetting chemicals that are excreted naturally by vertebrates (e.g., humans and fish) and can enter natural waters through the discharge of treated and raw sewage. Steroidal estrogens in plants may enter the food web and become a serious threat to human health. We evaluated the uptake and accumulation of ethinylestradiol (EE2) and 17β-estradiol (17β-E2) in lettuce plants (Lactuca sativa) grown under controlled environmental condition over 21 days growth period. An effective analytical method based on ultrasonic liquid extraction (ULE) for solid samples and solid phase extraction (SPE) for liquid samples with gas chromatography-mass spectrometry (GC/MS) has been developed to determine the steroid estrogens in lettuce plants. The extent of uptake and accumulation was observed in a dose-dependent manner and roots were major organs for estrogen deposition. Unlike the 17β-E2, EE2 was less accumulated and translocated from root to leaves. For 17β-E2, the distribution in lettuce was primarily to roots after the second week (13%), whereas in leaves it was (10%) over the entire study period. The distribution of EE2 at 2000 μg L-1 in roots and leaves was very low (3.07% and 0.54%) during the first week and then was highest (12% in roots and 8% in leaves) in last week. Bioaccumulation factor values of 17β-E2 and EE2 in roots were 0.33 and 0.29 at 50 μg L-1 concentration as maximum values were found at 50 μg L-1 rather than 500 and 2000 in all observed plant tissues. Similar trend was noticed in roots than leaves for bioconcentration factor as the highest bioconcentration values were observed at 50 μg L-1 concentration instead of 500 and 2000 μg L-1 spiked concentration. These findings mainly indicate the potential for uptake and bioaccumulation of estrogens in lettuce plants. Overall, the estrogen contents in lettuce were compared to the FAO/WHO recommended toxic level and were found to be higher than the toxic level which is of serious concern to the public health. This analytical procedure may aid in future studies on risks associated with uptake of endocrine-disrupting chemicals in lettuce plants.
    Matched MeSH terms: Endocrine Disruptors/analysis*; Endocrine Disruptors/toxicity
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links