Displaying all 3 publications

Abstract:
Sort:
  1. Poidinger M, Hall RA, Mackenzie JS
    Virology, 1996 Apr 15;218(2):417-21.
    PMID: 8610471
    The Japanese encephalitis (JE) serocomplex of flaviviruses comprises 10 members, 9 of which: Alfuy (ALF); Koutango (KOU); Kokobera (KOK); Kunjin (KUN); Murray Valley encephalitis (MVE); JE; Stratford (STR); Usutu (USU); and West Nile (WN) have been isolated from Africa, southern Europe, Middle East, Asia, and Australia. The tenth member, St. Louis encephalitis (SLE) virus, is confined to North, Central, and South America. For ALF, KOK, KOU, STR, and USU, no sequence data have as yet been reported, and little molecular phylogeny has been determined for this complex as a whole. Using a rapid, one-step RT-PCR and universal primers, we have amplified and sequenced a 450-600 base pair region of the virus genome encompassing the N terminus of the nonstructural protein NS5 and the 5' end of the 3' noncoding region, for several strains of all of these viruses, except USU and SLE viruses. These data, as well as published sequence data for other flaviviruses, were analyzed with the ClustalW and Phylip computer packages. The resultant phylogenetic data were consistent with some of the current flavivirus serological classification, showing a close relationship between ALF and MVE viruses and between KOK and STR viruses, but suggested that KOK and STR are distantly related to the other viruses and should perhaps be reclassified in their own serocomplex. The data also confirmed the close relationship between KUN and WN viruses and showed that an isolate of KUN virus from Sarawak may represent a "link" between these two virus species. In addition, the primary sequence data revealed a polymorphic region just downstream of the stop codon in the 3' end of the viral genomes.
    Matched MeSH terms: Encephalitis, Arbovirus/virology
  2. Prow NA, Setoh YX, Biron RM, Sester DP, Kim KS, Hobson-Peters J, et al.
    J Virol, 2014 Sep 1;88(17):9947-62.
    PMID: 24942584 DOI: 10.1128/JVI.01304-14
    The mosquito-borne West Nile virus (WNV) is responsible for outbreaks of viral encephalitis in humans, horses, and birds, with particularly virulent strains causing recent outbreaks of disease in eastern Europe, the Middle East, North America, and Australia. Previous studies have phylogenetically separated WNV strains into two main genetic lineages (I and II) containing virulent strains associated with neurological disease. Several WNV-like strains clustering outside these lineages have been identified and form an additional five proposed lineages. However, little is known about whether these strains have the potential to induce disease. In a comparative analysis with the highly virulent lineage I American strain (WNVNY99), the low-pathogenicity lineage II strain (B956), a benign Australian strain, Kunjin (WNVKUN), the African WNV-like Koutango virus (WNVKOU), and a WNV-like isolate from Sarawak, Malaysia (WNVSarawak), were assessed for neuroinvasive properties in a murine model and for their replication kinetics in vitro. While WNVNY99 replicated to the highest levels in vitro, in vivo mouse challenge revealed that WNVKOU was more virulent, with a shorter time to onset of neurological disease and higher morbidity. Histological analysis of WNVKOU- and WNVNY99-infected brain and spinal cords demonstrated more prominent meningoencephalitis and the presence of viral antigen in WNVKOU-infected mice. Enhanced virulence of WNVKOU also was associated with poor viral clearance in the periphery (sera and spleen), a skewed innate immune response, and poor neutralizing antibody development. These data demonstrate, for the first time, potent neuroinvasive and neurovirulent properties of a WNV-like virus outside lineages I and II.
    Matched MeSH terms: Encephalitis, Arbovirus/virology
  3. Piyasena TBH, Setoh YX, Hobson-Peters J, Prow NA, Bielefeldt-Ohmann H, Khromykh AA, et al.
    Vector Borne Zoonotic Dis, 2017 12;17(12):825-835.
    PMID: 29083957 DOI: 10.1089/vbz.2017.2172
    In Australia, infection of horses with the West Nile virus (WNV) or Murray Valley encephalitis virus (MVEV) occasionally results in severe neurological disease that cannot be clinically differentiated. Confirmatory serological tests to detect antibody specific for MVEV or WNV in horses are often hampered by cross-reactive antibodies induced to conserved epitopes on the envelope (E) protein. This study utilized bacterially expressed recombinant antigens derived from domain III of the E protein (rE-DIII) of MVEV and WNV, respectively, to determine whether these subunit antigens provided specific diagnostic markers of infection with these two viruses. When a panel of 130 serum samples, from horses with known flavivirus infection status, was tested in enzyme-linked immunosorbent assay (ELISA) using rE-DIII antigens, a differential diagnosis of MVEV or WNV was achieved for most samples. Time-point samples from horses exposed to flavivirus infection during the 2011 outbreak of equine encephalitis in south-eastern Australia also indicated that the rE-DIII antigens were capable of detecting and differentiating MVEV and WNV infection in convalescent sera with similar sensitivity and specificity to virus neutralization tests and blocking ELISAs. Overall, these results indicate that the rE-DIII is a suitable antigen for use in rapid immunoassays for confirming MVEV and WNV infections in horses in the Australian context and warrant further assessment on sensitive, high-throughput serological platforms such as multiplex immune assays.
    Matched MeSH terms: Encephalitis, Arbovirus/virology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links