This study investigated the functional specialisation characteristics of brain in multiple right-hand dominant subjects pertaining to the activation of the cerebral motor cortices evoked by unilateral finger tapping, especially in primary motor (M1) and supplementary motor (SMA) areas. This multiple-subject study used unilateral (UNIright and UNIleft) selfpaced tapping of hand fingers to activate the M1 and SMA. Brain activation characteristics were analysed using statistical parametric mapping (SPM). Activation for UNIright and UNIleft showed the involvement of contralateral and ipsilateral M1 and SMA. A larger activation area but with a lower percentage of signal change (PSC) were observed in the left M1 due to the control on UNIright (4164 voxels at a = 0.001, PSC = 1.650) as compared to the right M1 due to the control on UNIleft (2012 voxels at a = 0.001, PSC = 2.377). This is due to the influence of the tapping rate effects which is greater than what could be produced by the average effects of the dominant and sub-dominant hands. The significantly higher PSC value observed in the right M1 (p < 0.05) is due to a higher control demand used by the brain in coordinating the tapping of the sub-dominant fingers. The findings obtained from this study showed strong evidence of the existence of brain functional specialisation and could be used as baseline references in determining the most probable motor pathways in a sample of subjects.
Objective: This study investigates functional specialisation in, and effective connectivity between the
precentral gyrus (PCG) and supplementary motor area (SMA) in seven right handed female subjects.
Methods: Unimanual (UNIright and UNIleft) and bimanual (BIM) self-paced tapping of hand fingers were
performed by the subjects to activate PCG and SMA. Brain activations and effective connectivity were
analysed using statistical parametric mapping (SPM), dynamic causal modeling (DCM) and Bayesian
model selection (BMS) and were reported based on group fixed (FFX) and random (RFX) effects
analyses. Results: Group results showed that the observed brain activation for UNIright and UNIleft fulfill contralateral behavior of motor coordination with a larger activation area for UNIright. The activation for BIM occurs in both hemispheres with BIMright showing higher extent of activation as compared to BIMleft. Region of interest (ROI) analyses reveal that the number of activated voxel (NOV) and percentage of signal change (PSC) on average is higher in PCG than SMA for all tapping conditions. However, comparing between hemispheres for both UNI and BIM, higher PSC is observed in the right PCG and the left SMA. DCM and BMS results indicate that most subjects prefer PCG as the intrinsic input for UNIright and UNIleft. The input was later found to be bi-directionally connected to SMA for UNIright. The bi-directional model was then used for BIM in the left and right hemispheres. The model was in favour of six out of seven subjects. DCM results for BIM indicate the existence of interhemispheric connectivity between the right and left hemisphere PCG. Conclusion: The findings strongly support the existence of functional specialisation and integration i.e. effective connectivity in human brain during finger tapping and can be used as baselines in determining the probable motor coordination pathways and their connection strength in a population of subjects.
Various studies on medial olivocochlear (MOC) efferents have implicated it in multiple roles in the auditory system (e.g., dynamic range adaptation, masking reduction, and selective attention). This study presents a systematic simulation of inferior colliculus (IC) responses with and without electrical stimulation of the MOC. Phenomenological models of the responses of auditory nerve (AN) fibers and IC neurons were used to this end. The simulated responses were highly consistent with physiological data (replicated 3 of the 4 known rate-level responses all MOC effects-shifts, high stimulus level reduction and enhancement). Complex MOC efferent effects which were previously thought to require integration from different characteristic frequency (CF) neurons were simulated using the same frequency inhibition excitation circuitry. MOC-induced enhancing effects were found only in neurons with a CF range from 750 Hz to 2 kHz. This limited effect is indicative of the role of MOC activation on the AN responses at the stimulus offset.
Functional dyspepsia (FD) is a common disorder of yet uncertain etiology. Dyspeptic symptoms are usually meal related and suggest an association to gastrointestinal (GI) sensorimotor dysfunction. Cholecystokinin (CCK) is an established brain-gut peptide that plays an important regulatory role in gastrointestinal function. It inhibits gastric motility and emptying via a capsaicin sensitive vagal pathway. The effects on emptying are via its action on the proximal stomach and pylorus. CCK is also involved in the regulation of food intake. It is released in the gut in response to a meal and acts via vagal afferents to induce satiety. Furthermore CCK has also been shown to be involved in the pathogenesis of panic disorder, anxiety and pain. Other neurotransmitters such as serotonin and noradrenaline may be implicated with CCK in the coordination of GI activity. In addition, intravenous administration of CCK has been observed to reproduce the symptoms in FD and this effect can be blocked both by atropine and loxiglumide (CCK-A antagonist). It is possible that an altered response to CCK may be responsible for the commonly observed gastric sensorimotor dysfunction, which may then be associated with the genesis of dyspeptic symptoms.