Displaying all 10 publications

Abstract:
Sort:
  1. Al-Shadidi JRMH, Al-Shammari S, Al-Mutairi D, Alkhudhair D, Thu HE, Hussain Z
    Int J Nanomedicine, 2024;19:8373-8400.
    PMID: 39161363 DOI: 10.2147/IJN.S472433
    Despite all major advancements in drug discovery and development in the pharmaceutical industry, cancer is still one of the most arduous challenges for the scientific community. The implications of nanotechnology have certainly resolved major issues related to conventional anticancer modalities; however, the undesired recognition of nanoparticles (NPs) by the mononuclear phagocyte system (MPS), their poor stability in biological fluids, premature release of payload, and low biocompatibility have restricted their clinical translation. In recent decades, chitosan (CS)-based nanodelivery systems (eg, polymeric NPs, micelles, liposomes, dendrimers, conjugates, solid lipid nanoparticles, etc.) have attained promising recognition from researchers for improving the pharmacokinetics and pharmacodynamics of chemotherapeutics. However, the specialty of this review is to mainly focus on and critically discuss the targeting potential of various CS-based NPs for treatment of different types of cancer. Based on their delivery mechanisms, we classified CS-based NPs into stimuli-responsive, passive, or active targeting nanosystems. Moreover, various functionalization strategies (eg, grafting with polyethylene glycol (PEG), hydrophobic substitution, tethering of stimuli-responsive linkers, and conjugation of targeting ligands) adapted to the architecture of CS-NPs for target-specific delivery of chemotherapeutics have also been considered. Nevertheless, CS-NPs based therapeutics hold great promise for improving therapeutic outcomes while mitigating the off-target effects of chemotherapeutics, a long-term safety profile and clinical testing in humans are warranted for their successful clinical translation.
    Matched MeSH terms: Drug Carriers/pharmacokinetics
  2. Mahmood S, Taher M, Mandal UK
    Int J Nanomedicine, 2014;9:4331-46.
    PMID: 25246789 DOI: 10.2147/IJN.S65408
    Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon(®) 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a homogeneous distribution and low polydispersity index (0.08). They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 μg/cm(2)/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser scanning microscopy proved an enhanced permeation of coumarin-6-loaded transfersomes, to a depth of approximately160 μM, as compared with rigid liposomes. These ex vivo findings proved that a raloxifene hydrochloride-loaded transfersome formulation could be a superior alternative to oral delivery of the drug.
    Matched MeSH terms: Drug Carriers/pharmacokinetics*
  3. Zakarial Ansar FH, Latifah SY, Wan Kamal WHB, Khong KC, Ng Y, Foong JN, et al.
    Int J Nanomedicine, 2020;15:7703-7717.
    PMID: 33116496 DOI: 10.2147/IJN.S262395
    Background: Thymoquinone (TQ), an active compound isolated from Nigella sativa, has been proven to exhibit various biological properties such as antioxidant. Although oral delivery of TQ is valuable, it is limited by poor oral bioavailability and low solubility. Recently, TQ-loaded nanostructured lipid carrier (TQ-NLC) was formulated with the aim of overcoming the limitations. TQ-NLC was successfully synthesized by the high-pressure homogenization method with remarkable physiochemical properties whereby the particle size is less than 100 nm, improved encapsulation efficiency and is stable up to 24 months of storage. Nevertheless, the pharmacokinetics and biodistribution of TQ-NLC have not been studied. This study determined the bioavailability of oral and intravenous administration of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) in rats and its distribution to organs.

    Materials and Methods: TQ-NLC was radiolabeled with technetium-99m before the administration to the rats. The biodistribution and pharmacokinetics parameters were then evaluated at various time points. The rats were imaged at time intervals and the percentage of the injected dose/gram (%ID/g) in blood and each organ was analyzed.

    Results: Oral administration of TQ-NLC exhibited greater relative bioavailability compared to intravenous administration. It is postulated that the movement of TQ-NLC through the intestinal lymphatic system bypasses the first metabolism and therefore enhances the relative bioavailability. However, oral administration has a slower absorption rate compared to intravenous administration where the AUC0-∞ was 4.539 times lower than the latter.

    Conclusion: TQ-NLC had better absorption when administered intravenously compared to oral administration. However, oral administration showed greater bioavailability compared to the intravenous route. This study provides the pharmacokinetics and biodistribution profile of TQ-NLC in vivo which is useful to assist researchers in clinical use.

    Matched MeSH terms: Drug Carriers/pharmacokinetics
  4. Tan JM, Karthivashan G, Abd Gani S, Fakurazi S, Hussein MZ
    J Mater Sci Mater Med, 2016 Feb;27(2):26.
    PMID: 26704543 DOI: 10.1007/s10856-015-5635-8
    Chemically functionalized carbon nanotubes are highly suitable and promising materials for potential biomedical applications like drug delivery due to their distinct physico-chemical characteristics and unique architecture. However, they are often associated with problems like insoluble in physiological environment and cytotoxicity issue due to impurities and catalyst residues contained in the nanotubes. On the other hand, surface coating agents play an essential role in preventing the nanoparticles from excessive agglomeration as well as providing good water dispersibility by replacing the hydrophobic surfaces of nanoparticles with hydrophilic moieties. Therefore, we have prepared four types of biopolymer-coated single walled carbon nanotubes systems functionalized with anticancer drug, betulinic acid in the presence of Tween 20, Tween 80, polyethylene glycol and chitosan as a comparative study. The Fourier transform infrared spectroscopy studies confirm the bonding of the coating molecules with the SWBA and these results were further supported by Raman spectroscopy. All chemically coated samples were found to release the drug in a slow, sustained and prolonged fashion compared to the uncoated ones, with the best fit to pseudo-second order kinetic model. The cytotoxic effects of the synthesized samples were evaluated in mouse embryonic fibroblast cells (3T3) at 24, 48 and 72 h. The in vitro results reveal that the cytotoxicity of the samples were dependent upon the drug release profiles as well as the chemical components of the surface coating agents. In general, the initial burst, drug release pattern and cytotoxicity could be well-controlled by carefully selecting the desired materials to suit different therapeutic applications.
    Matched MeSH terms: Drug Carriers/pharmacokinetics
  5. Rahman HS, Rasedee A, How CW, Abdul AB, Zeenathul NA, Othman HH, et al.
    Int J Nanomedicine, 2013;8:2769-81.
    PMID: 23946649 DOI: 10.2147/IJN.S45313
    Zerumbone, a natural dietary lipophilic compound with low water solubility (1.296 mg/L at 25°C) was used in this investigation. The zerumbone was loaded into nanostructured lipid carriers using a hot, high-pressure homogenization technique. The physicochemical properties of the zerumbone-loaded nanostructured lipid carriers (ZER-NLC) were determined. The ZER-NLC particles had an average size of 52.68 ± 0.1 nm and a polydispersity index of 0.29 ± 0.004 μm. Transmission electron microscopy showed that the particles were spherical in shape. The zeta potential of the ZER-NLC was -25.03 ± 1.24 mV, entrapment efficiency was 99.03%, and drug loading was 7.92%. In vitro drug release of zerumbone from ZER-NLC was 46.7%, and for a pure zerumbone dispersion was 90.5% over 48 hours, following a zero equation. Using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human T-cell acute lymphoblastic leukemia (Jurkat) cells, the half maximal inhibitory concentration (IC50) of ZER-NLC was 5.64 ± 0.38 μg/mL, and for free zerumbone was 5.39 ± 0.43 μg/mL after 72 hours of treatment. This study strongly suggests that ZER-NLC have potential as a sustained-release drug carrier system for the treatment of leukemia.
    Matched MeSH terms: Drug Carriers/pharmacokinetics
  6. Kura AU, Hussein Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P
    Int J Nanomedicine, 2013;8:1103-10.
    PMID: 23524513 DOI: 10.2147/IJN.S39740
    A new layered organic-inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl) alanine (levodopa), intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH) was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nano-composite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w). A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.
    Matched MeSH terms: Drug Carriers/pharmacokinetics
  7. Md Ramli SH, Wong TW, Naharudin I, Bose A
    Carbohydr Polym, 2016 Nov 05;152:370-381.
    PMID: 27516284 DOI: 10.1016/j.carbpol.2016.07.021
    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology.
    Matched MeSH terms: Drug Carriers/pharmacokinetics*
  8. Yusefi M, Shameli K, Jahangirian H, Teow SY, Umakoshi H, Saleh B, et al.
    Int J Nanomedicine, 2020;15:5417-5432.
    PMID: 32801697 DOI: 10.2147/IJN.S250047
    INTRODUCTION: Green-based materials have been increasingly studied to circumvent off-target cytotoxicity and other side-effects from conventional chemotherapy.

    MATERIALS AND METHODS: Here, cellulose fibers (CF) were isolated from rice straw (RS) waste by using an eco-friendly alkali treatment. The CF network served as an anticancer drug carrier for 5-fluorouracil (5-FU). The physicochemical and thermal properties of CF, pure 5-FU drug, and the 5-FU-loaded CF (CF/5-FU) samples were evaluated. The samples were assessed for in vitro cytotoxicity assays using human colorectal cancer (HCT116) and normal (CCD112) cell lines, along with human nasopharyngeal cancer (HONE-1) and normal (NP 460) cell lines after 72-hours of treatment.

    RESULTS: XRD and FTIR revealed the successful alkali treatment of RS to isolate CF with high purity and crystallinity. Compared to RS, the alkali-treated CF showed an almost fourfold increase in surface area and zeta potential of up to -33.61 mV. SEM images illustrated the CF network with a rod-shaped structure and comprised of ordered aggregated cellulose. TGA results proved that the thermal stability of 5-FU increased within the drug carrier. Based on UV-spectroscopy measurements for 5-FU loading into CF, drug loading encapsulation efficiency was estimated to be 83 ±0.8%. The release media at pH 7.4 and pH 1.2 showed a maximum drug release of 79% and 46%, respectively, over 24 hours. In cytotoxicity assays, CF showed almost no damage, while pure 5-FU killed most of the both normal and cancer cells. Impressively, the drug-loaded sample of CF/5-FU at a 250 µg/mL concentration demonstrated a 58% inhibition against colorectal cancer cells, but only a 23% inhibition against normal colorectal cells. Further, a 62.50 µg/mL concentration of CF/5FU eliminated 71% and 39% of nasopharyngeal carcinoma and normal nasopharyngeal cells, respectively.

    DISCUSSION: This study, therefore, showed the strong potential anticancer activity of the novel CF/5-FU formulations, warranting their further investigation.

    Matched MeSH terms: Drug Carriers/pharmacokinetics
  9. Li YT, Chua MJ, Kunnath AP, Chowdhury EH
    Int J Nanomedicine, 2012;7:2473-81.
    PMID: 22701315 DOI: 10.2147/IJN.S30500
    Multidrug resistance, a major impediment to successful cancer chemotherapy, is the result of overexpression of ATP-binding cassette (ABC) transporters extruding internalized drugs. Silencing of ABC transporter gene expression with small interfering RNA (siRNA) could be an attractive approach to overcome multidrug resistance of cancer, although delivery of siRNA remains a major hurdle to fully exploit the potential of siRNA-based therapeutics. Recently, we have developed pH-sensitive carbonate apatite nanoparticles to efficiently carry and transport siRNA across the cell membrane, enabling knockdown of the cyclin B1 gene and consequential induction of apoptosis in synergy with anti-cancer drugs.
    Matched MeSH terms: Drug Carriers/pharmacokinetics
  10. Jain A, Sharma G, Ghoshal G, Kesharwani P, Singh B, Shivhare US, et al.
    Int J Pharm, 2018 Jul 30;546(1-2):97-105.
    PMID: 29715533 DOI: 10.1016/j.ijpharm.2018.04.061
    The work entails a novel strategy of formulating the lycopene loaded whey protein isolate nanoparticles (LYC-WPI-NPs) solely using the rational blend of biomacromolecule without using equipment-intensive techniques. The LYC-WPI-NPs were fabricated as a substantial drug delivery platform, with maximum entrapment, spatial and controlled release manners, exceptional plasma concentration, and perspective for discrepancy delivery of therapeutics. Prepared nano-formulations were measured in ultra-fine size (100-350 nm) with sphere-shaped. The percent lycopene entrapment of prepared LYC-WPI-NPs was estimated in the range to 50 and 65%. In vitro percent cumulative release study demonstrated deaden and extended release i.e. approximately 75% following 16th h. The in vitro percent cell survival (cytotoxicity study) of prepared nanoparticles was evaluated against MCF-7 breast cancer cells by MTT based colorimetric assay. Sub-cellular localization of lycopene when delivered by LYC-WPI-NPs was assessed by HPLC (high performance liquid chromatography). The WPI-NPs enhance the oral bioavailability of lycopene by controlling its release from nano-formulation and facilitating its absorption through lymphatic pathways. Prophylactic anticancer efficacy of LYC-WPI-NPs was evaluated thereafter on experimentally induced breast cancer animal model. Conclusively, it may quite reasonable that lycopene loaded protein nanoparticles are competent to improve the biopharmaceutical attributes of lycopene and demonstrated prophylactic anticancer activity, decrease tumor proliferation and increase the survival rate of treated animals, thus signifying their feasible usefulness in cancer therapeutic and intervention.
    Matched MeSH terms: Drug Carriers/pharmacokinetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links