Displaying all 12 publications

Abstract:
Sort:
  1. Gan CS, Lim PJ, Razif MF, Yusof R, Othman S
    Rev Soc Bras Med Trop, 2017 Jan-Feb;50(1):99-103.
    PMID: 28327809 DOI: 10.1590/0037-8682-0207-2016
    INTRODUCTION:: Infection with all serotypes of dengue virus (DV) results in augmented antigen presentation by MHC class I molecules. However, the upregulation of immunoproteasome subunits only results from infection with two serotypes. This study aims to elucidate changes in the expression of immunoproteasome subunits resulting from infection with DV, particularly DV serotype 2 (DV2).

    METHODS:: HepG2 cells were grown in various culture milieu. Total cellular RNA and proteins were extracted and quantified.

    RESULTS:: Results demonstrated sequestration of immunoproteasome subunits LMP2 and LMP7 in DV2-infected cells.

    CONCLUSIONS:: This study provides insights into the mechanisms underlying immune evasion by DV.
    Matched MeSH terms: Dengue Virus/metabolism*
  2. Tio PH, Jong WW, Cardosa MJ
    Virol J, 2005;2:25.
    PMID: 15790424
    The search for the dengue virus receptor has generated many candidates often identified only by molecular mass. The wide host range of the viruses in vitro combined with multiple approaches to identifying the receptor(s) has led to the notion that many receptors or attachment proteins may be involved and that the different dengue virus serotypes may utilize different receptors on the same cells as well as on different cell types.
    Matched MeSH terms: Dengue Virus/metabolism*
  3. Ismail NA, Jusoh SA
    Interdiscip Sci, 2017 Dec;9(4):499-511.
    PMID: 26969331 DOI: 10.1007/s12539-016-0157-8
    Dengue infections are currently estimated to be 390 million cases annually. Yet, there is no vaccine or specific therapy available. Envelope glycoprotein E (E protein) of DENV mediates viral attachment and entry into the host cells. Several flavonoids have been shown to inhibit HIV-1 and hepatitis C virus entry during the virus-host membrane fusion. In this work, molecular docking method was employed to predict the binding of nine flavonoids (baicalin, baicalein, EGCG, fisetin, glabranine, hyperoside, ladanein, quercetin and flavone) to the soluble ectodomain of DENV type 2 (DENV2) E protein. Interestingly, eight flavonoids were found to dock into the same binding pocket located between the domain I and domain II of different subunits of E protein. Consistent docking results were observed not only for the E protein structures of the DENV2-Thai and DENV2-Malaysia (a homology model) but also for the E protein structures of tick-borne encephalitis virus and Japanese encephalitis virus. In addition, molecular dynamics simulations were performed to further evaluate the interaction profile of the docked E protein-flavonoid complexes. Ile4, Gly5, Asp98, Gly100 and Val151 residues of the DENV2-My E protein that aligned to the same residues in the DENV2-Thai E protein form consistent hydrogen bond interactions with baicalein, quercetin and EGCG during the simulations. This study demonstrates flavonoids potentially form interactions with the E protein of DENV2.
    Matched MeSH terms: Dengue Virus/metabolism*
  4. Shahfiza N, Osman H, Hock TT, Abdel-Hamid AZ
    Acta Biochim. Pol., 2017;64(2):215-219.
    PMID: 28350402 DOI: 10.18388/abp.2015_1224
    BACKGROUND: Dengue is one of the major public health problems in the world, affecting more than fifty million cases in tropical and subtropical region every year. The metabolome, as pathophysiological end-points, provide significant understanding of the mechanism and progression of dengue pathogenesis via changes in the metabolite profile of infected patients. Recent developments in diagnostic technologies provide metabolomics for the early detection of infectious diseases.

    METHODS: The mid-stream urine was collected from 96 patients diagnosed with dengue fever at Penang General Hospital (PGH) and 50 healthy volunteers. Urine samples were analyzed with proton nuclear magnetic resonance (1H NMR) spectroscopy, followed by chemometric multivariate analysis. NMR signals highlighted in the orthogonal partial least square-discriminant analysis (OPLS-DA) S-plots were selected and identified using Human Metabolome Database (HMDB) and Chenomx Profiler. A highly predictive model was constructed from urine profile of dengue infected patients versus healthy individuals with the total R2Y (cum) value 0.935, and the total Q2Y (cum) value 0.832.

    RESULTS: Data showed that dengue infection is related to amino acid metabolism, tricarboxylic acid intermediates cycle and β-oxidation of fatty acids. Distinct variations in certain metabolites were recorded in infected patients including amino acids, various organic acids, betaine, valerylglycine, myo-inositol and glycine.

    CONCLUSION: Metabolomics approach provides essential insight into host metabolic disturbances following dengue infection.

    Matched MeSH terms: Dengue Virus/metabolism*
  5. Baharuddin A, Amir Hassan A, Othman R, Xu Y, Huang M, Ario Tejo B, et al.
    Chem Pharm Bull (Tokyo), 2014;62(10):947-55.
    PMID: 25273053
    In the efforts to find an anti-viral treatment for dengue, a simple tryptophan fluorescence-screening assay aimed at identifying dengue domain III envelope (EIII) protein inhibitors was developed. Residue Trp391 of EIII was used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residue upon binding to a peptide. The analysis was based on the electron excitation at 280 nm and fluorescence emission at 300-400 nm of EIII, followed by quenching of fluorescence in the presence of potential peptidic inhibitors coded DS36wt, DS36opt, DN58wt and DN58opt. The present study found that the fluorescence of the recombinant EIII was quenched following the binding of DS36opt, DN58wt and DN58opt in a concentration-dependent manner. Since the λmax for emission remained unchanged, the effect was not due to a change in the environment of the tryptophan side chain. In contrast, a minimal fluorescence-quenching effect of DS36wt at 20 and 40 µM suggested that the DS36wt does not have any binding ability to EIII. This was supported by a simple native-page gel retardation assay that showed a band shift of EIII domain when incubated with DS36opt, DN58wt and DN58opt but not with DS36wt. We thus developed a low-cost and convenient spectrophotometric binding assay for the analysis of EIII-peptide interactions in a drug screening application.
    Matched MeSH terms: Dengue Virus/metabolism*
  6. Panya A, Songprakhon P, Panwong S, Jantakee K, Kaewkod T, Tragoolpua Y, et al.
    Molecules, 2021 May 23;26(11).
    PMID: 34071102 DOI: 10.3390/molecules26113118
    Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3'-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 μM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.
    Matched MeSH terms: Dengue Virus/metabolism
  7. Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N, et al.
    Curr Biol, 2019 Dec 16;29(24):4241-4248.e5.
    PMID: 31761702 DOI: 10.1016/j.cub.2019.11.007
    Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.
    Matched MeSH terms: Dengue Virus/metabolism
  8. Lim SV, Rahman MB, Tejo BA
    BMC Bioinformatics, 2011;12 Suppl 13:S24.
    PMID: 22373153 DOI: 10.1186/1471-2105-12-S13-S24
    The dengue virus is the most significant arthropod-borne human pathogen, and an increasing number of cases have been reported over the last few decades. Currently neither vaccines nor drugs against the dengue virus are available. NS5 methyltransferase (MTase), which is located on the surface of the dengue virus and assists in viral attachment to the host cell, is a promising antiviral target. In order to search for novel inhibitors of NS5 MTase, we performed a computer-aided virtual screening of more than 5 million commercially available chemical compounds using two approaches: i) structure-based screening using the crystal structure of NS5 MTase and ii) ligand-based screening using active ligands of NS5 MTase. Structure-based screening was performed using the LIDAEUS (LIgand Discovery At Edinburgh UniverSity) program. The ligand-based screening was carried out using the EDULISS (EDinburgh University LIgand Selection System) program.
    Matched MeSH terms: Dengue Virus/metabolism
  9. Chee HY, AbuBakar S
    Biochem Biophys Res Commun, 2004 Jul 16;320(1):11-7.
    PMID: 15207695
    Binding of dengue virus 2 (DENV-2) to C6/36 mosquito cells protein was investigated. A 48 kDa DENV-2-binding C6/36 cells protein (D2BP) was detected in a virus overlay protein-binding assay. The binding occurred only to the C6/36 cells cytosolic protein fraction and it was inhibited by free D2BP. D2BP was shown to bind to DENV-2 E in the far-Western-binding studies and using mass spectrometry (MS) and MS/MS, peptide masses of the D2BP that matched to beta-tubulin and alpha-tubulin chains were identified. These findings suggest that DENV-2 through DENV-2 E binds directly to a 48 kDa tubulin or tubulin-like protein of C6/36 mosquito cells.
    Matched MeSH terms: Dengue Virus/metabolism*
  10. Soe HJ, Manikam R, Raju CS, Khan MA, Sekaran SD
    PLoS One, 2020;15(8):e0237141.
    PMID: 32764789 DOI: 10.1371/journal.pone.0237141
    Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
    Matched MeSH terms: Dengue Virus/metabolism
  11. Anasir MI, Ramanathan B, Poh CL
    Viruses, 2020 03 26;12(4).
    PMID: 32225021 DOI: 10.3390/v12040367
    Dengue virus (DENV) presents a significant threat to global public health with more than 500,000 hospitalizations and 25,000 deaths annually. Currently, there is no clinically approved antiviral drug to treat DENV infection. The envelope (E) glycoprotein of DENV is a promising target for drug discovery as the E protein is important for viral attachment and fusion. Understanding the structure and function of DENV E protein has led to the exploration of structure-based drug discovery of antiviral compounds and peptides against DENV infections. This review summarizes the structural information of the DENV E protein with regards to DENV attachment and fusion. The information enables the development of antiviral agents through structure-based approaches. In addition, this review compares the potency of antivirals targeting the E protein with the antivirals targeting DENV multifunctional enzymes, repurposed drugs and clinically approved antiviral drugs. None of the current DENV antiviral candidates possess potency similar to the approved antiviral drugs which indicates that more efforts and resources must be invested before an effective DENV drug materializes.
    Matched MeSH terms: Dengue Virus/metabolism
  12. Abd-Jamil J, Cheah CY, AbuBakar S
    Protein Eng. Des. Sel., 2008 Oct;21(10):605-11.
    PMID: 18669522 DOI: 10.1093/protein/gzn041
    A method to map the specific site on dengue virus envelope protein (E) that interacts with cells and a neutralizing antibody is developed using serially truncated dengue virus type 2 (DENV-2) E displayed on M13 phages as recombinant E-g3p fusion proteins. Recombinant phages displaying the truncated E consisting of amino acids 297-423 (EB2) and amino acids 379-423 (EB4) were neutralized by DENV-2 patient sera and the DENV-2 E-specific 3H5-1 monoclonal antibodies suggesting that the phages retained the DENV-2 E antigenic properties. The EB4 followed by EB2 recombinant phages bound the most to human monocytes (THP-1), African green monkey kidney (Vero) cells, mosquito (C6/36) cells, ScFv specific against E and C6/36 cell proteins. Two potential cell attachment sites were mapped to loop I (amino acids 297 to 312) and loop II (amino acids 379-385) of the DENV-2 E using the phage-displayed truncated DENV-2 E fragments and by the analysis of the E structure. Loop II was present only in EB4 recombinant phages. There was no competition for binding to C6/36 cell proteins between EB2 and EB4 phages. Loop I and loop II are similar to the sub-complex specific and type-specific neutralizing monoclonal antibody binding sites, respectively. Hence, it is proposed that binding and entry of DENV involves the interaction of loop I to cell surface glycosaminoglycan-motif and a subsequent highly specific interaction involving loop II with other cell proteins. The phage displayed truncated DENV-2 E is a powerful and useful method for the direct determination of DENV-2 E cell binding sites.
    Matched MeSH terms: Dengue Virus/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links