Displaying all 2 publications

Abstract:
Sort:
  1. Mukari SZ, Mamat WH
    Audiol. Neurootol., 2008;13(5):328-34.
    PMID: 18460868 DOI: 10.1159/000128978
    The purposes of this study were to: (1) compare medial olivocochlear system (MOCS) functioning and speech perception in noise in young and older adults and (2) to quantify the correlation between MOCS functioning and speech perception in noise. Measurements were taken in 20 young (mean 26.3 +/- 2.1 years) and 20 older adults (mean 55.2 +/- 2.8 years). Contralateral distortion product otoacoustic emission (DPOAE) suppression was measured to assess MOCS functioning. Speech perception in noise was evaluated using the Hearing in Noise Test in noise-ipsilateral, noise-front and noise-contralateral test conditions. The results revealed that the older group had a significantly lower high-frequency (3-8 kHz) contralateral DPOAE suppression, and performed more poorly in the noise-ipsilateral condition than the younger group. However, there was no correlation between contralateral DPOAE suppression and speech perception in noise. This study suggests that poor speech perception performance in noise experienced by older adults might be due to a decline in medial olivocochlear functioning, among other factors.
    Matched MeSH terms: Cochlear Nucleus/physiology*
  2. Dewey RS, Francis ST, Guest H, Prendergast G, Millman RE, Plack CJ, et al.
    Neuroimage, 2020 Jan 01;204:116239.
    PMID: 31586673 DOI: 10.1016/j.neuroimage.2019.116239
    In animal models, exposure to high noise levels can cause permanent damage to hair-cell synapses (cochlear synaptopathy) for high-threshold auditory nerve fibers without affecting sensitivity to quiet sounds. This has been confirmed in several mammalian species, but the hypothesis that lifetime noise exposure affects auditory function in humans with normal audiometric thresholds remains unconfirmed and current evidence from human electrophysiology is contradictory. Here we report the auditory brainstem response (ABR), and both transient (stimulus onset and offset) and sustained functional magnetic resonance imaging (fMRI) responses throughout the human central auditory pathway across lifetime noise exposure. Healthy young individuals aged 25-40 years were recruited into high (n = 32) and low (n = 30) lifetime noise exposure groups, stratified for age, and balanced for audiometric threshold up to 16 kHz fMRI demonstrated robust broadband noise-related activity throughout the auditory pathway (cochlear nucleus, superior olivary complex, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body and auditory cortex). fMRI responses in the auditory pathway to broadband noise onset were significantly enhanced in the high noise exposure group relative to the low exposure group, differences in sustained fMRI responses did not reach significance, and no significant group differences were found in the click-evoked ABR. Exploratory analyses found no significant relationships between the neural responses and self-reported tinnitus or reduced sound-level tolerance (symptoms associated with synaptopathy). In summary, although a small effect, these fMRI results suggest that lifetime noise exposure may be associated with central hyperactivity in young adults with normal hearing thresholds.
    Matched MeSH terms: Cochlear Nucleus/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links