RESULTS: Using a combination of short (10X Genomics) and long read (PacBio HiFi, PacBio CLR) sequencing and a genetic map for the GIFT strain, we generated a chromosome level genome assembly for the GIFT. Using genomes of two closely related species (O. mossambicus, O. aureus), we characterised the extent of introgression between these species and O. niloticus that has occurred during the breeding process. Over 11 Mb of O. mossambicus genomic material could be identified within the GIFT genome, including genes associated with immunity but also with traits of interest such as growth rate.
CONCLUSION: Because of the breeding history of elite strains, current reference genomes might not be the most suitable to support further studies into the GIFT strain. We generated a chromosome level assembly of the GIFT strain, characterising its mixed origins, and the potential contributions of introgressed regions to selected traits.
RESULTS: Here, we report a comprehensive genomic analysis of the green mud crab Scylla paramamosain using ultralong sequencing technologies, achieving a high-quality chromosome-level assembly. The refined 1.21 Gb genome, with an impressive contig N50 of 11.45 Mb, offers a valuable genomic resource. The genome exhibits 33,662 protein-coding genes, enriched in various pathways related to development and environmental adaptation. Gene family analysis shows expansion in development-related pathways and contraction in metabolic pathways, indicating niche adaptations. Notably, investigation into Hox gene regulation sheds light on their role in pleopod development, with the Abd-A gene identified as a linchpin. Post-transcriptional regulation involving novel-miR1317 negatively regulates Abd-A levels. Furthermore, the potential role of fru gene in ovarian development and the identification of novel-miR35 as a regulator of Spfru2 add complexity to gene regulatory networks. Comparative functional analysis across Decapoda species reveals neo-functionalization of the elovl6 gene in the synthesis of long-chain polyunsaturated fatty acids (LC-PUFA), suggesting its importance in environmental adaptation.
CONCLUSIONS: Our findings shed light on various aspects of crab biology, including genome sequencing, assembly, and annotation, as well as gene family expansion, contraction, and regulatory mechanisms governing crucial developmental processes such as metamorphosis, reproductive strategies, and fatty acid metabolism.
METHODS: Using as little as 20 ng of DNA from formalin-fixed paraffin-embedded tissues, we analysed 25 previously characterised gliomas for multi-locus copy number losses (CNLs) on 1p and 19q, including 11 oligodendrogliomas (ODG) and 14 non-oligodendroglial (non-ODG) controls. Fluorescence in-situ hybridisation (FISH) was used as a reference standard.
RESULTS: The software confidently detected combined contiguous 1p/19q CNLs in 11/11 ODGs (100% sensitivity), using a copy number cut-off of ≤1.5 and a minimum of 10 amplicons covering the regions. Only partial non-specific losses were identified in non-ODGs (100% specificity). Copy number averages of ODG and non-ODG groups were significantly different (p<0.001). NGS was concordant with FISH and was superior to it in distinguishing partial from contiguous losses indicative of whole-arm chromosomal deletion.
CONCLUSIONS: This commercial NGS panel, along with the standard Ion Torrent algorithm, accurately detected 1p/19q losses in ODG samples, obviating the need for specialised custom-made informatic analyses. This can easily be incorporated into routine glioma workflow as an alternative to FISH.
CASE PRESENTATION: Here we report a 16-year-old Malaysian Chinese boy, a product of a non-consanguineous marriage, who presented with intellectual disability, facial dysmorphism, high arched palate, congenital talipes equinovarus (clubfoot), congenital scoliosis, congenital heart defect, and behavioral problems. A routine chromosome analysis on 20 metaphase cells showed a normal 46, XY G-banded karyotype. Array-based comparative genomic hybridization was performed using a commercially available 244 K 60-mer oligonucleotide microarray slide according to the manufacturer's protocol. This platform allows genome-wide survey and molecular profiling of genomic aberrations with an average resolution of about 10 kB. In addition, multiplex ligation-dependent probe amplification analysis was carried out using SALSA MLPA kit P320 Telomere-13 to confirm the array-based comparative genomic hybridization finding. Array-based comparative genomic hybridization analysis revealed a 7.3 MB terminal deletion involving chromosome band 18q22.3-qter. This finding was confirmed by multiplex ligation-dependent probe amplification, where a deletion of ten probes mapping to the 18q22.3-q23 region was detected, and further multiplex ligation-dependent probe amplification analysis on his parents showed the deletion to be de novo.
CONCLUSION: The findings from this study expand the phenotypic spectrum of the 18q- deletion syndrome by presenting a variation of typical 18q- deletion syndrome features to the literature. In addition, this case report demonstrated the ability of the molecular karyotyping method, such as array-based comparative genomic hybridization, to assist in the diagnosis of cases with a highly variable phenotype and variable aberrations, such as 18q- deletion syndrome.