Displaying publications 1 - 20 of 86 in total

Abstract:
Sort:
  1. Razak MR, Aris AZ, Md Yusoff F, Yusof ZNB, Kim SD, Kim KW
    PLoS One, 2022;17(4):e0264989.
    PMID: 35472091 DOI: 10.1371/journal.pone.0264989
    The usage of cladocerans as non-model organisms in ecotoxicological and risk assessment studies has intensified in recent years due to their ecological importance in aquatic ecosystems. The molecular assessment such as gene expression analysis has been introduced in ecotoxicological and risk assessment to link the expression of specific genes to a biological process in the cladocerans. The validity and accuracy of gene expression analysis depends on the quantity, quality and integrity of extracted ribonucleic acid (RNA) of the sample. However, the standard methods of RNA extraction from the cladocerans are still lacking. This study evaluates the extraction of RNA from tropical freshwater cladocerans Moina micrura using two methods: the phenol-chloroform extraction method (QIAzol) and a column-based kit (Qiagen Micro Kit). Glycogen was introduced in both approaches to enhance the recovery of extracted RNA and the extracted RNA was characterised using spectrophotometric analysis (NanoDrop), capillary electrophoresis (Bioanalyzer). Then, the extracted RNA was analysed with reverse transcription polymerase chain reaction (RT-PCR) to validate the RNA extraction method towards downstream gene expression analysis. The results indicate that the column-based kit is most suitable for the extraction of RNA from M. micrura, with the quantity (RNA concentration = 26.90 ± 6.89 ng/μl), quality (A260:230 = 1.95 ± 0.15, A280:230 = 1.85 ± 0.09) and integrity (RNA integrity number, RIN = 7.20 ± 0.16). The RT-PCR analysis shows that the method successfully amplified both alpha tubulin and actin gene at 33-35 cycles (i.e. Ct = 32.64 to 33.48). The results demonstrate that the addition of glycogen is only suitable for the phenol-chloroform extraction method. RNA extraction with high and comprehensive quality control assessment will increase the accuracy and reliability of downstream gene expression, thus providing more ecotoxicological data at the molecular biological level on other freshwater zooplankton species.
    Matched MeSH terms: Chloroform*
  2. Letchumanan K, Abdullah NH, Abdul-Aziz A
    Prep Biochem Biotechnol, 2024 Jul;54(6):749-763.
    PMID: 37990367 DOI: 10.1080/10826068.2023.2282529
    Dynamic maceration facilitates diffusion in solid-liquid extraction through controlling temperature and providing agitation. However, equipment design for dynamic maceration in previous investigations resulted in inadequate homogeneity of temperature and solid dispersion. A laboratory scale extractor was designed to aid the heat and mass transfer process while preventing solvent vaporization when performing dynamic maceration in a controlled environment. This study aimed to evaluate the efficiency of dynamic maceration using the laboratory scale extractor compared to a shaker incubator to extract triterpenoid saponins from Azadirachta excelsa leaves. The dynamic maceration of A. excelsa leaves was optimized using a Face-centered central composite design (FCCCD) with response surface methodology (RSM). Independent variables analyzed include ethanol-to-chloroform ratio, extraction temperature, extraction time, and sample-to-solvent ratio, while responses include yield of extract and triterpenoid saponins content (TSC). Optimum conditions were ethanol-to-chloroform ratio of 90:10, extraction temperature of 45 °C, extraction time of 60 minutes, and sample-to-solvent ratio of 1:50 g/ml. There was a significant percentage of increase in yield of extract and TSC by 41.1% and 13.3%, respectively, for the laboratory scale extractor compared to the shaker incubator. This study showed the importance of equipment design in enhancing triterpenoid saponins extraction through elevating the efficiency of the dynamic maceration process.
    Matched MeSH terms: Chloroform/chemistry
  3. Kathirvalu G, Chandramathi S, S A A, Atiya N, Begum S, Christophe W, et al.
    Trop Biomed, 2023 Jun 01;40(2):152-159.
    PMID: 37650400 DOI: 10.47665/tb.40.2.004
    Antibiotics which once a boon in medicine and saved millions of lives are now facing an ever-growing menace of antibacterial resistance, which desperately needs new antibacterial drugs which are innovative in chemistry and mode of action. For many years, the world has turned to natural plants with antibacterial properties to combat antibiotic resistance. On that basis, we aimed to identify plants with antibacterial and antibiotic potentiating properties. Seventeen different extracts of 3 plants namely Burkillanthus malaccensis, Diospyros hasseltii and Cleisthanthus bracteosus were tested against multi-drug resistant Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Methicillinresistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA). Antibacterial activity of hexane, methanol and chloroform extracts of bark, seed, fruit, flesh and leaves from these plants were tested using, disk diffusion assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiotic potentiating capabilities were tested using time-kill assay. B. malaccensis fruit chloroform extract showed the biggest zone of inhibition against MRSA (13.00±0.0 mm) but C. bracteosus bark methanol extract showed the biggest inhibition zone against MSSA (15.33±0.6 mm). Interestingly, bark methanol extract of C. bracteosus was active against MRSA (8.7±0.6 mm), MSSA (7.7±0.6 mm) (Gram-positive) and A. baumannii (7.7±0.6 mm) (Gram-negative). Overall, the leaf methanol and bark methanol extract of C. bracteosus warrants further investigation such as compound isolation and mechanism of action for validating its therapeutic use as antibiotic potentiator importantly against MRSA and A. baumannii.
    Matched MeSH terms: Chloroform/pharmacology
  4. Saleh MI, Ahmad M, Darus H
    Talanta, 1990 Jul;37(7):757-9.
    PMID: 18965016
    A series of chelating reagents, 1-phenyl-3-methyl-4-(2-fluorobenzoyl)-5-pyrazolone, 1-phenyl-3-methyl-4-(3-fluorobenzoyl)-5-pyrazolone and 1-phenyl-3-methyl-4-(4-fluorobenzoyl)-5-pyrazolone, has been synthesized. The extraction of Ln(III), (Ln = La, Eu and Lu) into chloroform with these reagents at 30 +/- 1 degrees has been studied. The composition of the complexes extracted has been determined by the slope method, and the extraction constants K(ex), were measured. The presence of the fluorine atom in the reagents does not make the K(ex), values much different from those obtained with the parent pyrazolone.
    Matched MeSH terms: Chloroform
  5. Muhammad F, Tahir M, Zeb M, Kalasad MN, Mohd Said S, Sarker MR, et al.
    Sci Rep, 2020 Mar 16;10(1):4828.
    PMID: 32179797 DOI: 10.1038/s41598-020-61602-1
    This paper reports the potential application of cadmium selenide (CdSe) quantum dots (QDs) in improving the microelectronic characteristics of Schottky barrier diode (SBD) prepared from a semiconducting material poly-(9,9-dioctylfluorene) (F8). Two SBDs, Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO, are fabricated by spin coating a 10 wt% solution of F8 in chloroform and 10:1 wt% solution of F8:CdSe QDs, respectively, on a pre-deposited poly(3-hexylthiophene) (P3HT) on indium tin oxide (ITO) substrate. To study the electronic properties of the fabricated devices, current-voltage (I-V) measurements are carried out at 25 °C in dark conditions. The I-V curves of Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO SBDs demonstrate asymmetrical behavior with forward bias current rectification ratio (RR) of 7.42 ± 0.02 and 142 ± 0.02, respectively, at ± 3.5 V which confirm the formation of depletion region. Other key parameters which govern microelectronic properties of the fabricated devices such as charge carrier mobility (µ), barrier height (ϕb), series resistance (Rs) and quality factor (n) are extracted from their corresponding I-V characteristics. Norde's and Cheung functions are also applied to characterize the devices to study consistency in various parameters. Significant improvement is found in the values of Rs, n, and RR by 3, 1.7, and 19 times, respectively, for Ag/F8-CdSe QDs/P3HT/ITO SBD as compared to Ag/F8/P3HT/ITO. This enhancement is due to the incorporation of CdSe QDs having 3-dimensional quantum confinement and large surface-to-volume area. Poole-Frenkle and Richardson-Schottky conduction mechanisms are also discussed for both of the devices. Morphology, optical bandgap (1.88 ± 0.5 eV) and photoluminescence (PL) spectrum of CdSe QDs with a peak intensity at 556 nm are also reported and discussed.
    Matched MeSH terms: Chloroform
  6. Rosli MAF, Azizan KA, Baharum SN, Goh HH
    Data Brief, 2017 Oct;14:295-297.
    PMID: 28795107 DOI: 10.1016/j.dib.2017.07.068
    Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.
    Matched MeSH terms: Chloroform
  7. Siew WL
    J AOAC Int, 1996 1 1;79(1):80-2.
    PMID: 8620115
    A method for determining shell in palm kernel cake (PKC) is described. This simple and rapid method requires little pretreatment compared with the method currently used in PKC trade, in which the sample undergoes defatting, acid and alkali digestion, and washing, before a chloroform-alcohol solution is used to separate the shells. In the proposed method, only defatting the sample is required. The shells are separated by the density difference between the shell and PKC in a potassium iodide solution. Recoveries of at least 93% were obtained, and the correlation coefficient between the actual shell content and the determined shell content was 0.999, with gradients of 0.97 and 0.98 for fine and coarse shell, respectively.
    Matched MeSH terms: Chloroform
  8. Roheem FO, Mat Soad SZ, Ahmed QU, Ali Shah SA, Latip J, Zakaria ZA
    Molecules, 2019 Mar 13;24(6).
    PMID: 30871172 DOI: 10.3390/molecules24061006
    Digestive enzymes and free radical inhibitors are used to prevent complications resulting from diabetes. Entadaspiralis (family Leguminosae), which is a well-known medicinal plant in herbal medicine due to its various traditional and medicinal applications, was studied. Crude extracts were successively obtained from the stem bark using petroleum ether, chloroform and methanol as extracting solvents. The antioxidant activity of all the extracts, fractions and isolated compounds were estimated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene and 2,2'-azinobis(-3-ethylbenzothiazine-6-sulfonic acid) (ABTS) assays, while digestive enzymes inhibitory activity was assessed using α-amylase and α-glucosidase inhibitory methods. Structure elucidation of pure compounds was achieved through different spectroscopic analysis methods. Fractionation and purification of the most active methanol extract resulted in the isolation of a ferulic ester namely; (e)-hexyl 3-(4-hydroxy-3-methoxyphenyl) acrylate (FEQ-2) together with five known phenolic constituents, identified as kaempferol (FEQ-3), 5,4'-dihydroxy-3,7,3'-trimethoxyflavone (FEQ-2), gallic acid (FEQ-5), (+)-catechin (FEQ-7) and (-)-epicatechin (FEQ-8). FEQ-5 exhibited the strongest antioxidant and enzyme inhibitory activities followed by FEQ-3 and FEQ-4. FEQ-2 also displayed potent free radical scavenging activity with IC50 values of 13.79 ± 2.13 (DPPH) and 4.69 ± 1.25 (ABTS) µg/mL, respectively. All other compounds were found active either against free radicals or digestive enzymes.
    Matched MeSH terms: Chloroform
  9. Ng ZC, Roslan RA, Lau WJ, Gürsoy M, Karaman M, Jullok N, et al.
    Polymers (Basel), 2020 Aug 21;12(9).
    PMID: 32825561 DOI: 10.3390/polym12091883
    The non-selective property of conventional polyurethane (PU) foam tends to lower its oil absorption efficiency. To address this issue, we modified the surface properties of PU foam using a rapid solvent-free surface functionalization approach based on the chemical vapor deposition (CVD) method to establish an extremely thin yet uniform coating layer to improve foam performance. The PU foam was respectively functionalized using different monomers, i.e., perfluorodecyl acrylate (PFDA), 2,2,3,4,4,4-hexafluorobutyl acrylate (HFBA), and hexamethyldisiloxane (HMDSO), and the effect of deposition times (1, 5 and 10 min) on the properties of foam was investigated. The results showed that all the modified foams demonstrated a much higher water contact angle (i.e., greater hydrophobicity) and greater absorption capacities compared to the control PU foam. This is due to the presence of specific functional groups, e.g., fluorine (F) and silane (Si) in the modified PU foams. Of all, the PU/PHFBAi foam exhibited the highest absorption capacities, recording 66.68, 58.15, 53.70, and 58.38 g/g for chloroform, acetone, cyclohexane, and edible oil, respectively. These values were 39.19-119.31% higher than that of control foam. The promising performance of the PU/PHFBAi foam is due to the improved surface hydrophobicity attributed to the original perfluoroalkyl moieties of the HFBA monomer. The PU/PHFBAi foam also demonstrated a much more stable absorption performance compared to the control foam when both samples were reused for up to 10 cycles. This clearly indicates the positive impact of the proposed functionalization method in improving PU properties for oil absorption processes.
    Matched MeSH terms: Chloroform
  10. Azrina, A., Maznah, I., Azizah, A.H.
    MyJurnal
    The level of total lipid and oryzanol content, an important antioxidant compound in locally produced bran was investigated. Total lipid in rice bran was extracted using 3:2 chloroform:methanol mixture yielding 16.4% fat. Oryzanol content was determined without saponification using a reverse-phase HPLC. Four fractions of oryzanol were successfully separated and quantitated. The 4 isomers were cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, campestryl ferulate and mixtures of β–sitosteryl ferulate and cycloartanyl ferulate. The oryzanol content of local mixed varieties ranged from 23.7–43.0 mg g-1. The oryzanol concentration may depend on factors such as plant varieties, processing methods employed, extracting solvent used and ratio of extracting solvent to bran as well as extracting solvent temperatures. This study showed the potential of oryzanol extract from rice bran as a source of antioxidant.
    Matched MeSH terms: Chloroform
  11. Fahmi Fariq Muhammad, Khaulah Sulaiman
    Dihexyl-sexithiophene (DH6T) was doped with tris (8-hydroxyquinolinate) aluminum (Alq3) to prepare blends of DH6T/ Alq3 by dissolving the mixture in the chloroform/hexane co-solvent. Solid films with different thickness deposited on quartz substrates were obtained from the blends via casting process. Optical absorption spectroscopy has been performed to measure the optical band gap of pure and doped DH6T as well as variations in the band gap with dopant concentration (weight %). This variation in optical band gap with dopant concentration was determined quantitatively with fitted and extrapolated techniques and observed qualitatively from the red shift appeared along the optical absorption spectra. The results showed that within a specific dopant content, the optical energy gap, Eg of DH6T decreases from 2.69 eV to 1.8 eV with increasing dopant concentration to 23.1%.
    Matched MeSH terms: Chloroform
  12. Som AM, Ahmat N, Abdul Hamid HA, Azizuddin N
    Heliyon, 2019 Feb;5(2):e01244.
    PMID: 30828665 DOI: 10.1016/j.heliyon.2019.e01244
    Hylocereus undatus foliage is believed to contain antioxidants similar to its peel. Numerous studies have been conducted to determine the total phenolic content (TPC) and antioxidant activity on the Hylocereus undatus pulps and peels; however, similar studies on its foliage have yet to be investigated. In this study, Hylocereus undatus foliage and peels were extracted using two different solvents namely; chloroform and methanol through Folin-Ciocalteu method and Diphenyl-1-Ipicrylhydrazyl (DPPH) free radical scavenging assay for TPC and antioxidant activity, respectively. As for TPC, results revealed that the peels gave higher TPC in both methanol (48.15 mg GAE/100g extract) and chloroform (18.89 mg GAE/100g extract) extractions than foliage (30.3 mg GAE/100g extract and 5.92 mg GAE/100g extract, respectively). However, when a comparison was made between foliage and peels in terms of its scavenging effects in DPPH assay, the peels contained more antioxidants (18.71%) than foliage (38.3%) in the chloroform solvent extracts. This study shows that Hylocereus undatus foliage has a similar antioxidant activity as its peels and is potentially a natural antioxidant in food applications.
    Matched MeSH terms: Chloroform
  13. Albaayit SF, Abba Y, Abdullah R, Abdullah N
    PMID: 25610488 DOI: 10.1155/2014/975450
    Clausena excavata (Lour.), locally known as "Kemantu hitam," is a common plant in Malaysian folklore medicine. This study evaluated the antioxidant properties of the solvent extracts of C. excavata leaves and determined the acute toxicity of methanolic extract C. excavata (MECE) leaves in Sprague-Dawley rats. Harvested leaves were dried and subjected to solvent extraction using petroleum ether, chloroform, ethyl acetate and methanol in succession. The antioxidant activity of each extract was determined using the ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl dihydrazyl (DPPH) radical scavenging activity. The total phenolic content (TPC) and total flavonoids content (TFC) were estimated by Folin-Ciocalteu and ethanolic aluminium chloride method, respectively. The chloroform extract was found to be highest in flavonoid content, while the methanolic extract showed the highest TPC and antioxidant activity. There was no mortality in rats treated with MECE leaves even at a high dose of 5000 mg/kg body weight. However, the MECE leaves produced mild to moderate pathological changes in the liver and kidneys, shown by mild degenerative changes and leucocyte infiltration. The extract did not affect the haematological parameters or relative weights of the liver or kidneys. Overall, the MECE leaves have potent antioxidant activity and are presumed safe to be used orally as health-promoting product at low to moderate doses.
    Matched MeSH terms: Chloroform
  14. Wong KC, Hag Ali DM, Boey PL
    Nat Prod Res, 2012;26(7):609-18.
    PMID: 21834640 DOI: 10.1080/14786419.2010.538395
    The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety.
    Matched MeSH terms: Chloroform/chemistry
  15. Ooi KL, Muhammad TS, Sulaiman SF
    J Ethnopharmacol, 2010 Mar 2;128(1):92-9.
    PMID: 20045455 DOI: 10.1016/j.jep.2009.12.032
    The decoction of the whole plant of Physalis minima L. is traditionally consumed to treat cancer. Its anticancer property has been previously verified (using in vitro cytotoxicity assays) against NCI-H23 lung, CORL23 lung and MCF7 breast cancer cell lines but the mechanism underlying the anticancer potency towards ovarian carcinoma cells remain unclear.
    Matched MeSH terms: Chloroform/chemistry
  16. Phoon WH, Goh KT, Lee LT, Tan KT, Kwok SF
    Med J Malaysia, 1983 Mar;38(1):31-4.
    PMID: 6633331
    Two outbreaks involving 31 persons with jaundice are described. All had originally been diagnosed as having viral hepatitis. But subsequent investigations showed that all had been exposed to chloroform at work. Toxic jaundice from chemical exposure presents a similar clinical picture to that of viral hepatitis, but fever appears to be uncommon. Doctors who look after workers should be familiar with the type of work and health hazards of their patients. A knowledge of occupational medicine and epidemiology would enable doctors to help in detecting and preventing
    occupational disease.
    Matched MeSH terms: Chloroform/adverse effects*
  17. Zakaria ZA, Sahmat A, Azmi AH, Nur Zainol AS, Omar MH, Balan T, et al.
    BMC Complement Med Ther, 2021 Jan 14;21(1):35.
    PMID: 33446155 DOI: 10.1186/s12906-020-03200-2
    INTRODUCTION: Water-soluble, but not lipid-soluble, extract of Dicranopteris linearis leaves has been proven to possess hepatoprotective activity. The present study aimed to validate the hepatoprotective and antioxidant activities, and phytoconstituents of lipid-soluble (chloroform) extract of D. linearis leaves.

    METHODS: The extract of D. linearis leaves (CEDL; 50, 250 and 500 mg/kg) was orally administered to rats for 7 consecutive days followed by the oral administration of 3 g/kg PCM to induce liver injury. Blood was collected for liver function analysis while the liver was obtained for histopathological examination and endogenous antioxidant activity determination. The extract was also subjected to antioxidant evaluation and phytochemicals determination via phytochemical screening, HPLC and UPLC-HRMS analyses.

    RESULTS: CEDL exerted significant (p 

    Matched MeSH terms: Chloroform/chemistry
  18. Zakaria ZA, Sahmat A, Hizami Azmi A, Zainol ASN, Omar MH, Balan T, et al.
    Pharm Biol, 2023 Dec;61(1):1152-1161.
    PMID: 37559390 DOI: 10.1080/13880209.2023.2241510
    CONTEXT: Bauhinia purpurea L. (Fabaceae) is used in the Ayurvedic system to treat various oxidative-related ailments (e.g., wounds, ulcers etc.). Therefore, it is believed that the plant also has the potential to alleviate oxidative-related liver damage.

    OBJECTIVE: This study elucidates the hepatoprotective activity of chloroform extract of B. purpurea leaves (CEBP) in paracetamol (PCM)-induced liver injury (PILI) rats.

    MATERIALS AND METHODS: Male Sprague-Dawley rats (n = 6) were pre-treated once daily (p.o.) with CEBP (50-500 mg/kg) for seven consecutive days before being administered (p.o.) a hepatotoxic agent, 3 g/kg PCM. Liver enzyme levels were determined from the collected blood, while the collected liver was used to determine the activity of endogenous antioxidant enzymes and for histopathological examination. CEBP was also subjected to radical scavenging assays and phytochemical analysis.

    RESULTS: CEBP significantly (p 

    Matched MeSH terms: Chloroform/pharmacology
  19. Abed SA, Sirat HM, Taher M
    EXCLI J, 2013;12:404-12.
    PMID: 26600731
    The antioxidant activity and the total phenolic content, as well as the influence of petroleum ether, chloroform and methanol extracts from the leaves of Gynotroches axillaris, on microorganisms were studied. The total phenolic contents were evaluated by using Folin-Ciocalteu reagent and the obtained values ranged from 70.0 to 620 mg GAE/g. The efficiency of antioxidation, which was identified through the scavenging of free radical DPPH, exhibited that the highest IC50 was in the methanolic extract (44.7 µg/mL) as compared to the standard ascorbic acid (25.83 µg/mL) and to standard BHT (17.2 µg/mL). In vitro antimicrobial activity of extracts was tested against Gram-negative bacteria, Gram-positive bacteria and fungi. Methanol extract showed activity in the range (225-900 μg/mL) with both types, while petroleum ether and chloroform extracts were only active with Bacillus subtilis. The three extracts strongly inhibited all fungi with activity 225-450 μg/mL. The toxicity test against brine shrimps indicated that all extracts were non-toxic with LC50 value more than 1000 µg/mL. The finding of this study supports the safety of these extracts to be used in medical treatments.
    Matched MeSH terms: Chloroform
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links