Displaying publications 1 - 20 of 99 in total

Abstract:
Sort:
  1. Aziz HA, Rahmat NS, Alazaiza MYD
    PMID: 35010685 DOI: 10.3390/ijerph19010420
    Chemical-based coagulants and flocculants are commonly used in the coagulation-flocculation process. However, the drawbacks of using these chemical materials have triggered researchers to find natural materials to substitute or reduce the number of chemical-based coagulants and flocculants. This study examines the potential application of Nephelium lappaceum seeds as a natural coagulant-coagulant aid with Tin (IV) chloride (SnCl4) in eliminating suspended solids (SS), colour, and chemical oxygen demand (COD) from landfill leachate. Results showed that the efficiency of Nephelium lappaceum was low when used as the main coagulant in the standard jar test. When SnCl4 was applied as a single coagulant, as much as 98.4% of SS, 96.8% of colour and 82.0% of COD was eliminated at an optimal dose of 10.5 g/L and pH 7. The higher removal efficiency of colour (88.8%) was obtained when 8.40 g/L of SnCl4 was applied with a support of 3 g/L of Nephelium lappaceum. When SnCl4 was utilised as a coagulant, and Nephelium lappaceum seed was used as a flocculant, the removal of pollutants generally improved. Overall, this research showed that Nephelium lappaceum seed is a viable natural alternative for treating landfill leachate as a coagulant aid.
    Matched MeSH terms: Chlorides
  2. Zainal SFFS, Aziz HA, Omar FM, Alazaiza MYD
    Chemosphere, 2021 Dec;285:131484.
    PMID: 34261011 DOI: 10.1016/j.chemosphere.2021.131484
    Stabilised leachate usually contains lower concentration of organic compounds than younger leachate; it has low biodegradability and generally unsuitable for biological treatment. The effectiveness of tetravalent metal salts in a coagulation-flocculation (C-F) process is still inclusive. Application of natural coagulants as an alternative to the chemical could reduce chemical usage, is less costly, and environmentally friendly. Hence, the objective of the current research is to examine the possibility of reducing the amount of Tin (IV) chloride (SnCl4) as a primary coagulant by adding Jatropha curcas (JC) as a flocculant as a sole treatment through the C-F process in treating concentrated suspended solids (SS) (547 mg/L), colour (19,705 Pt-Co) and chemical oxygen demand (COD) (4202 mg/L) in stabilised landfill leachate. The work also aims to evaluate the sludge properties after treatment. Functional groups, such as carboxylic acids, hydroxyl and amine/amino compounds (protein contents), were detected in the JC seed to facilitate the C-F process by neutralising the charge pollutant in water and cause the possibility of hydrogen bonding interaction between molecules. The combination of JC seed (0.9 g/L) as a flocculant reduced the dosage of SnCl4 as a coagulant from 11.1 g/L to 8.5 g/L with removals of 99.78%, 98.53% and 74.29% for SS, colour and COD, respectively. The presence of JC improved the sludge property with good morphology; the particles were in a rectangular shape, had clumps and strong agglomeration. These properties of sludge proved that JC seed could enhance the adsorption and bridging mechanism in the C-F procedure.
    Matched MeSH terms: Chlorides
  3. N SS, M N EE, C K K, M J N
    F1000Res, 2024;13:40.
    PMID: 39246826 DOI: 10.12688/f1000research.138665.1
    BACKGROUND: Jute fiber is one of the most versatile natural fibers that is widely used as a raw material for packaging, textiles, and construction; and as a reinforcement in composite materials for heavy-duty applications. In the past, acid hydrolysis and mechanical treatment via the ball milling method were common in the extraction of cellulose nanofiber (CNFs) from natural plant fibers. However, there are some drawbacks of using those methods where there will be a huge quantity of acidic wastewater generated when the acid hydrolysis method is performed.

    METHOD: This study investigated the potential use of a combination of chemical and mechanical methods in the extraction of jute CNFs. Through this method, the jute fibers were first chemically treated using sodium hydroxide (NaOH), sodium chlorite (NaClO 2) and sulphuric acid (H 2SO 4) to remove the non-cellulosic elements followed by mechanical milling by using a planetary ball mill.

    RESULTS: The shape and size of the obtained CNFs were observed under a field emission scanning electron microscope (FESEM). This study revealed that jute CNFs were successfully extracted through the combination of chemical and mechanical treatment methods where the obtained CNFs reveal themselves in smooth fibrous morphology with a diameter of 23 nm and 150-200nm in length.

    CONCLUSIONS: Jute cellulose nanofibers were successfully drawn out from raw jute fibers by means of a combination of chemical and mechanical treatment. The results obtained confirmed that the chemomechanical method is an effective technique for isolating the CNFs and its potential use as reinforcement material was explained.

    Matched MeSH terms: Chlorides/chemistry
  4. Yeo CI, Tan YS, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Oct 1;71(Pt 10):1159-64.
    PMID: 26594396 DOI: 10.1107/S2056989015016655
    The crystal and mol-ecular structures of the title salt, C8H8N3S2 (+)·Cl(-), (I), and salt hydrate, C8H7ClN3S2 (+)·Cl(-)·H2O, (II), are described. The heterocyclic ring in (I) is statistically planar and forms a dihedral angle of 9.05 (12)° with the pendant phenyl ring. The comparable angle in (II) is 15.60 (12)°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N-C-N-C-N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I) and (II) is the formation of charge-assisted amino-N-H⋯Cl(-) hydrogen bonds, leading to helical chains in (I) and zigzag chains in (II). In (I), these are linked by chains mediated by charge-assisted iminium-N(+)-H⋯Cl(-) hydrogen bonds into a three-dimensional architecture. In (II), the chains are linked into a layer by charge-assisted water-O-H⋯Cl(-) and water-O-H⋯O(water) hydrogen bonds with charge-assisted iminium-N(+)-H⋯O(water) hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II), the chloride anion and water mol-ecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18).
    Matched MeSH terms: Chlorides
  5. Leila Khodapanah, Wan Nor Azmin Sulaiman
    MyJurnal
    Eshtehard aquifer located in southwest of Tehran province, Iran, provides a large amount of water requirement for inhabitants of Eshtehard district. Monitoring and analyzing of groundwater quality are important for protecting groundwater as sustainable water resource. One of the most advanced techniques for groundwater quality interpolation and mapping is geostatistics methods. The purposes of this study are (1) to investigate major ions concentration and their relative abundance to provide an overview of present groundwater chemistry and (2) to map the groundwater quality in the study area using geostatistics techniques. In this investigation, ArcGIS 9.2 was used for predicting spatial distribution of some groundwater characteristics such as: Chloride, Sulfate, pH, and Conductivity. These methods are applied for data from 44 wells within the study area. The final maps show that the south parts of the Eshtehard aquifer have suitable groundwater quality for human consumption and in general, the groundwater quality degrades south to north and west to east of the Eshtehard plain along the groundwater flow path.
    Matched MeSH terms: Chlorides
  6. Muhammad Abbas Ahmad Zaini, Tan Wee Meng, Mohd. Johari Kamaruddin, Siti Hamidah Mohd Setapar, Mohd. Azizi Che Yunus
    Sains Malaysiana, 2014;43:1421-1428.
    This work is aimed to determine the characteristics of activated carbons derived from palm kernel shell (PKS) by microwave-induced zinc chloride activation for dye removal. Activation was performed in a microwave oven at power intensity of 70% for 10 min. The same procedures were repeated for activation using recycled ZnCl2 solution from the first activation. The activated carbons were characterized according to surface area, morphology, functional groups and batch adsorption. The yield for the first activation was 70.7% with surface area of 858m2/g. It was found that the activated carbon prepared using the recycled ZnCl2 still possesses good surface area for methylene blue removal. The adsorption behaviour of the continuous system was well fitted to and could be satisfactorily described by the Yoon and Nelson model.
    Matched MeSH terms: Chlorides
  7. Zainal SFFS, Aziz HA, Ramli SF, Omar FM
    Water Environ Res, 2022 Jan;94(1):e1667.
    PMID: 34842319 DOI: 10.1002/wer.1667
    This study was conducted to evaluate the effect of the toxicity levels of the coagulation and flocculation process on raw and treated leachate using acute toxicity tests. Tin tetrachloride (SnCl4 ) and the Jatropha curcas (JC) seed were used as coagulant and coagulant aid to remove concentrated suspended solids, SS (534 mg/L), color (19,297 Pt-Co), and chemical oxygen demand (COD) (4188 mg/L) in a stabilized landfill leachate. The toxicity effects on local red tilapia fish (Oreochromis niloticus) were investigated, which involved three main steps, namely, acclimatization, range-finding test, and short-term definitive test. The presence of JC seed (0.9 g/L) as a flocculant reduced the dosage of SnCl4 from 11.1 to 8.5 g/L and exhibited good removals of 99.78%, 98.53%, and 74.29%, respectively, for SS, color, and COD. The toxicity test indicated that only five fish died in the first 12 h for the treated sample compared with seven deaths for untreated leachate. In 96 h, a total of 42 and 31 mortality rates were noted for the raw and treated leachate samples, respectively. The treated sample could reduce the toxicity effects to the tested tilapia fish and is safe to be discharged at appropriate dilution concentrations. PRACTITIONER POINTS: Coagulation-flocculation by Tin (IV) chloride and Jatropha Curcas (JC) was investigated. Almost complete reduction of SS was obtained at 8.5 g/L of SnCl4 and 0.9 g/L of JC as flocculant. The toxicity effect was evaluated using red tilapia (Oreochromis niloticus) fish as the indicator. Treated leachate was considered acceptable as the number of dead fish was lower than the untreated leachate.
    Matched MeSH terms: Chlorides
  8. Wen Min S, Hasnat MA, Rahim AA, Mohamed N
    Chemosphere, 2013 Jan;90(2):674-82.
    PMID: 23063484 DOI: 10.1016/j.chemosphere.2012.09.048
    A series of experiments were carried out to determine the best medium for the recovery of cobalt by means of an electrogenerative system. Use of the electrogenerative system with a chloride medium had shown promising performance with the highest free energy of -389.8 kJ mol(-1) compared to that with sulphate and nitrate media. Subsequently, the influence of catholyte concentrations on cobalt recovery using the electrogenerative process was carried out by varying the initial cobalt concentration and sodium chloride concentration. The results showed that almost 100% recovery was attained within 1-4 h of the recovery process. Influence of pH was investigated where the electrogenerative system performed best between pH 5.0 and 7.0. Maximum cell performance of 83% with 99% cobalt removal was obtained at 90 min when 100 mg L(-1) of Co(2+) in 0.5 M NaCl was taken as catholyte solution. The values of ΔH(o) and ΔS(o) of the process were evaluated as 33.41 kJ mol(-1) and 0.13 kJ mol(-1), respectively.
    Matched MeSH terms: Chlorides/chemistry*
  9. Lee S, Roh Y, Kim KW
    Environ Geochem Health, 2019 Feb;41(1):71-79.
    PMID: 29761243 DOI: 10.1007/s10653-018-0121-0
    Mercuric species, Hg(II), interacts strongly with dissolved organic matter (DOM) through the oxidation, reduction, and complexation that affect the fate, bioavailability, and cycling of mercury, Hg, in aquatic environments. Despite its importance, the reactions between Hg(II) and DOM have rarely been studied in the presence of different concentrations of chloride ions (Cl-) under anoxic conditions. Here, we report that the extent of Hg(II) reduction in the presence of the reduced DOM decreases with increasing Cl- concentrations. The rate constants of Hg(II) reduction ranged from 0.14 to 1.73 h-1 in the presence of Cl- and were lower than the rate constant (2.41 h-1) in the absence of Cl-. Using a thermodynamic model, we showed that stable Hg(II)-chloride complexes were formed in the presence of Cl-. We further examined that H(0) was oxidized to Hg(II) in the presence of the reduced DOM and Cl- under anoxic conditions, indicating that Hg(II) reduction is inhibited by the Hg(0) oxidation. Therefore, the Hg(II) reduction by the reduced DOM can be offset due to the Hg(II)-chloride complexation and Hg(0) oxidation in chloride-rich environments. These processes can significantly influence the speciation of Hg and have an important implication for the behavior of Hg under environmentally relevant concentrations.
    Matched MeSH terms: Chlorides/chemistry*
  10. Lakshmanan S, Yung YL
    PMID: 33596165 DOI: 10.1080/19440049.2020.1842516
    Chloride reduction in crude palm oil (CPO) of greater than 80% was achieved with water washing conducted at 90°C. Inorganic chloride content in CPO was largely removed through washing, with no significant reduction in the organic chloride. Phosphorous content of CPO reduced by 20%, while trace elements such as calcium, magnesium and iron were also reduced in the washing operation. The 3-MCPDE formed in the refined, bleached and deodorised palm oil displayed (RBDPO) a linear relationship with the chloride level in washed CPO, which could be represented by the equation y = 0.91x, where y is 3-MCPDE and x represents the chloride in RBDPO refined from washed CPO. In plant scale trials using 5% water at 90°C, mild acidification of the wash water at 0.05% reduced chloride by average 76% in washed CPO. Utilising selected bleaching earths, controlled wash water temperature and wash water volume produced low chloride levels in RBDPO. Chloride content less than 1.4 mg kg-1 in plant RBDPO production was achieved, through physical refining of washed CPO containing less than 2 mg kg-1 chloride and would correspond to 3-MCPDE levels of 1.25 mg kg-1 in RBDPO. The 3-MCPDE reduced further to 1.1 mg kg-1 as the chloride level of washed CPO decreased below 1.8 mg kg-1. Chloride has been shown to facilitate the 3-MCPDE formation and its removal in lab scale washing study has yielded lower 3-MCPDE levels formed in RBDPO. In actual plant operations using washed CPO, 3-MCPDE levels below 1.25 mg kg-1 were achieved consistently in RBDPO.
    Matched MeSH terms: Chlorides/chemistry*
  11. Hashemi F, Hoepner L, Hamidinejad FS, Haluza D, Afrashteh S, Abbasi A, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):72368-72388.
    PMID: 37166731 DOI: 10.1007/s11356-023-27197-6
    COVID-19 has affected all aspects of human life so far. From the outset of the pandemic, preventing the spread of COVID-19 through the observance of health protocols, especially the use of sanitizers and disinfectants was given more attention. Despite the effectiveness of disinfection chemicals in controlling and preventing COVID-19, there are critical concerns about their adverse effects on human health. This study aims to assess the health effects of sanitizers and disinfectants on a global scale. A total of 91,056 participants from 154 countries participated in this cross-sectional study. Information on the use of sanitizers and disinfectants and health was collected using an electronic questionnaire, which was translated into 26 languages via web-based platforms. The findings of this study suggest that detergents, alcohol-based substances, and chlorinated compounds emerged as the most prevalent chemical agents compared to other sanitizers and disinfectants examined. Most frequently reported health issues include skin effects and respiratory effects. The Chi-square test showed a significant association between chlorinated compounds (sodium hypochlorite and per-chlorine) with all possible health effects under investigation (p-value <0.001). Examination of risk factors based on multivariate logistic regression analysis showed that alcohols and alcohols-based materials were associated with skin effects (OR, 1.98; 95%CI, 1.87-2.09), per-chlorine was associated with eye effects (OR, 1.83; 95%CI, 1.74-1.93), and highly likely with itching and throat irritation (OR, 2.00; 95%CI, 1.90-2.11). Furthermore, formaldehyde was associated with a higher prevalence of neurological effects (OR, 2.17; 95%CI, 1.92-2.44). Furthermore, formaldehyde was associated with a higher prevalence of neurological effects (OR, 2.17; 95%CI, 1.92-2.44). The use of sodium hypochlorite and per-chlorine also had a high chance of having respiratory effects. The findings of the current study suggest that health authorities need to implement more awareness programs about the side effects of using sanitizers and disinfectants during viral epidemics especially when they are used or overused.
    Matched MeSH terms: Chlorides/chemistry
  12. Wang Z, Li P, Ma K, Chen Y, Penfold J, Thomas RK, et al.
    J Colloid Interface Sci, 2019 Sep 05;557:124-134.
    PMID: 31518834 DOI: 10.1016/j.jcis.2019.09.016
    The ester sulfonate anionic surfactants are a potentially valuable class of sustainable surfactants. The micellar growth, associated rheological changes, and the onset of precipitation are important consequences of the addition of electrolyte and especially multi-valent electrolytes in anionic surfactants. Small angle neutron scattering, SANS, has been used to investigate the self-assembly and the impact of different valence electrolytes on the self-assembly of a range of ester sulfonate surfactants with subtly different molecular structures. The results show that in the absence of electrolyte small globular micelles form, and in the presence of NaCl, and AlCl3 relatively modest micellar growth occurs before the onset of precipitation. The micellar growth is more pronounced for the longer unbranched and branched alkyl chain lengths. Whereas changing the headgroup geometry from methyl ester to ethyl ester has in general a less profound impact. The study highlights the importance of relative counterion binding strengths and shows how the surfactant structure affects the counterion binding and hence the micelle structure. The results have important consequences for the response of such surfactants to different operational environments.
    Matched MeSH terms: Chlorides
  13. Ahmad J, Abdul Halim SN, How FN
    Acta Crystallogr E Crystallogr Commun, 2015 Jun 1;71(Pt 6):o410-1.
    PMID: 26090195 DOI: 10.1107/S2056989015009159
    The title compound, Ph3(PhCH2)P(+)·Cl(-)·H2O, was obtained unintentionally as the product of an attempted synthesis of a silver di-thio-carbamate complex using benzyl-tri-phenyl-phospho-nium as the counter-ion. The asymmetric unit consists of a phospho-nium cation and a chloride anion, and a water mol-ecule of crystallization. In the crystal, the chloride ion is linked to the water mol-ecule by an O-H⋯Cl hydrogen bond. The three units are further linked via C-H⋯Cl and C-H⋯O hydrogen bonds and C-H⋯ π inter-actions, forming a three-dimensional structure.
    Matched MeSH terms: Chlorides
  14. Kaur, S., Abdul Jalil, R., Akmar, S.L.
    Ann Dent, 2004;11(1):-.
    MyJurnal
    The objective of this study was to determine the effect of chewing commercially available meswak may have on levels of calcium, chloride, phosphate and thiocyanate in stimulated whole saliva. A total of 20 subjects participated in the investigation. They were distributed into two groups. Those in group A (10 individuals) were asked to first chew on a cotton roll (sized #1) followed by the chewing of an equivalent sized 5mm piece of commercially available meswak. Subjects in group B (10 individuals) did the same but, chewed on cotton roll (sized #2) followed by the chewing of an equivalent sized 10mm piece of commercially available meswak. After following a specified chewing protocol, samples of stimulated whole saliva were collected into a graduated tube at the end of every chewing regime. Calcium, chloride, phosphate and thiocyanate analysis were carried out using colour titration and spectrophotometer. Results from this investigation indicated that commercially available meswak chewing sticks apart from containing high amounts of calcium and chloride may possibly release phosphate and thiocyanate into whole saliva. These findings suggest that the commercially available meswak used as chewing sticks may have the potential of releasing substances into saliva that could influence the state of oral health. Further studies have to be carried out to ascertain the therapeutic benefits of chewing commercially available meswak.
    Matched MeSH terms: Chlorides
  15. Ng S, Yam F, Beh K, Hassan Z
    Sains Malaysiana, 2014;43:947-951.
    Often, fluoride based electrolyte was applied to synthesize highly ordered titanium dioxide nanotubes. However, in the present work, bundled titanium dioxide nanotubes were fabricated in chloride based electrolyte through electrochemical method. Structural and morphological investigations were carried out on the nanotubes synthesized under different anodization parameters. The growth mechanism of such nanotubes was elucidated and illustrated. The estimated diameter of the as-anodized nanotube was less than 150 nm while the length varied from hundreds of nanometer to microns. X-ray diffraction patterns and Raman spectra have showed anatase and rutile phases of titanium dioxide within the thermally treated samples.
    Matched MeSH terms: Chlorides
  16. Ahmad A, Fazial FF, Khalil HPSA, Fazry S, Lazim A
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124816.
    PMID: 37182623 DOI: 10.1016/j.ijbiomac.2023.124816
    Starch nanocrystals (SNCs) are tiny particles that possess unique qualities due to their small size, such as increased crystallinity, thin sheet structure, low permeability, and strong resistance to digestion. Although sago starch nanocrystals (SNCs) are naturally hydrophilic, their properties can be modified through chemical modifications to make them more versatile for various applications. In this study, the esterification process was used to modify SNCs using lauroyl chloride (LC) to enhance their surface properties. Three different ratios of LC to SNC were tested to determine the impact on the modified SNC (mSNC). The chemical changes in the mSNC were analyzed using FTIR and 1H NMR spectroscopy. ##The results showed that as the amount of LC increased, the degree of substitution (DS) also increased, which reduced the crystallinity of the mSNC and its thermal stability. However, the esterification process also improved the hydrophobicity of the SNC, making it more amphiphilic. The emulsification capabilities of the mSNC were investigated using a Pickering emulsion, and the results showed that the emulsion made from mSNC-1.0 had better stability than the one made from pristine SNC. This study highlights the potential of SNC as a particle emulsifier and demonstrates how esterification can improve its emulsification capabilities.
    Matched MeSH terms: Chlorides
  17. Benbelgacem, Farah Fadwa, Bellag, Oualid Abdelkader, Soroodi, Fatemeh, Abdul Aziz Ahmad, Hamzah Mohd Salleh, Noorbatcha, Ibrahim Ali
    MyJurnal
    Biocatalyst should have sufficient and efficient activity for the intended
    biotechnological application. In the quest for novel biocatalyst, there is a need to have a
    genetic diversity either by finding it within the astronomically large number of possible
    candidates or to obtain it by bioengineering an existing gene supported by various
    bioinformatic and molecular engineering tools. Nowadays, it is well-known that a huge
    number of microorganisms is unculturable and poses great challenges to access biocatalysts
    from these microbes. Metagenomics is one of the methods widely applied to reach out
    maximum possible variants to “bioprospect” biocatalysts. On the other hand, other approaches
    are available to bioengineer enzymes by modifying the DNA sequence precisely based on the
    structure and the function information of the protein in the case of rational design, or by a
    brave creation of anarchic mutations of the DNA sequence with directed evolution method. In
    this regard, both approaches, whether to bioprospect or to bioengineer biocatalysts have
    advantages and disadvantages which will be discussed in this paper.KEY WORDS: Sugar
    industry wastewater; aluminium sulphate; primary treatment, ferric chloride; polyaluminium
    chloride
    Matched MeSH terms: Chlorides
  18. Mohd Pisal MH, Osman AF, Jin TS, Rahman RA, Alrashdi AA, Masa A
    Polymers (Basel), 2021 Feb 17;13(4).
    PMID: 33671304 DOI: 10.3390/polym13040600
    Carbonized natural filler can offer the production of low cost composites with an eco-friendliness value. The evolving field of electronics encourages the exploration of more functions and potential for carbonized natural filler, such as by modifying its surface chemistry. In this work, we have performed surface modification on carbonized wood fiber (CWF) prior to it being used as filler in the ethylene vinyl acetate (EVA) composite system. Zinc chloride (ZnCl2) with various contents (2 to 8 wt%) was used to surface modify the CWF and the effects of ZnCl2 composition on the surface morphology and chemistry of the CWF filler were investigated. Furthermore, the absorptive, mechanical, thermal, and electrical properties of the EVA composites containing CWF-ZnCl2 were also analyzed. SEM images indicated changes in the morphology of the CWF while FTIR analysis proved the presence of ZnCl2 functional groups in the CWF. EVA composites incorporating the CWF-ZnCl2 showed superior mechanical, thermal and electrical properties compared to the ones containing the CWF. The optimum content of ZnCl2 was found to be 6 wt%. Surface modification raised the electrical conductivity of the EVA/CWF composite through the development of conductive deposits in the porous structure of the CWF as a channel for ionic and electronic transfer between the CWF and EVA matrix.
    Matched MeSH terms: Chlorides
  19. Arina Nasruddin, Azura Amid, Muhd Ezza Faiez Othman
    MyJurnal
    Green chemical method was applied to synthesize nanoparticles using recombinant
    bromelain. Among the numerous applications of recombinant bromelain, there is still no research
    on nanoparticles synthesis which encourages its utilization in this study. Four chemicals which are
    copper (II) chloride dihydrate (CuCl2.2H2O), cerium nitrate hexahydrate (Ce(NO3)3.6H2O), sodium
    selenite (Na2SeO3), and iron (III) chloride hexahydrate (FeCl3.6H2O) were selected to be screened
    for the suitability in nanoparticles biosynthesis by recombinant bromelain. The nanoparticles
    formed were characterized by using UV-visible absorption spectra. The biosynthesis process then
    was optimized by varying the centrifugation speed, temperature, and time to get the maximum
    absorption and weight of nanoparticles through central composite design (CCD) tool. Only
    CuCl2.2H2O showed a positive result for the screening process which was represented by the
    formation of colloidal solution and a maximum absorption at 580 nm. Thus, optimization was
    carried out for this chemical. Based on the optimization model, maximum absorption and weight
    were predicted at 67.5°C, 2 hrs, and 9,600 rpm. These optimal conditions were validated by
    repeating the biosynthesis process. The absorption and weight of the nanoparticles depended on the
    reaction of the chemical with recombinant bromelain. 3D plots showed that the optimal condition
    for high responses mostly depends on temperature and time.
    Matched MeSH terms: Chlorides
  20. Abbasi MA, Ijaz M, Aziz-Ur-Rehman -, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2020 Jul;33(4):1609-1616.
    PMID: 33583794
    In the planned research work, the nucleophilic substitution reaction of 1-[(E)-3-phenyl-2-propenyl]piperazine (1) was carried out with different sulfonyl chlorides (2a-g) at pH 9-10 to synthesize its different N-sulfonated derivatives (3a-g). The structures of the synthesized compounds were characterized by their proton-nuclear magnetic resonance (1H-NMR), carbon-nuclear magnetic resonance (13C-NMR) and Infra Red (IR) spectral data, along with CHN analysis. The inhibition potential of the synthesized molecules was ascertained against two bacterial pathogenic strains i.e. Bacillus subtilis and Escherichia coli. It was inferred from the results that some of the compounds were very suitable inhibitors of these bacterial strains. Moreover, their cytotoxicity was also profiled and it was outcome that most of these molecules possessed moderate cytotoxicity.
    Matched MeSH terms: Chlorides
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links