Displaying all 3 publications

Abstract:
Sort:
  1. Jeyamalar R, Chan SP
    Int J Cardiol, 1995 Nov 10;52(1):83-4.
    PMID: 8707441
    Thyrotoxicosis gives rise to a high output cardiac failure. Rarely, it can cause a dilated cardiomyopathy with severe impairment of myocardial function which improves significantly following treatment.
    Matched MeSH terms: Cardiomyopathy, Dilated/etiology*
  2. Yap WF, Chong HC
    Int J Rheum Dis, 2020 Nov;23(11):1568-1573.
    PMID: 32969582 DOI: 10.1111/1756-185X.13965
    FBN1 gene encodes for the connective tissue protein fibrillin-1 which can also regulate the profibrotic cytokine transforming growth factor (TGF)-ß1. Mutations in the FBN1 gene cause Marfan syndrome (MFS), a genetic condition with defective connective tissues. FBN1 haplotypes and single nucleotide polymorphisms have also been reported to be associated with systemic sclerosis (SSc), a connective tissue disease characterized by fibrosis of multiple organs. Furthermore, the duplication of the Fbn1 gene causes a SSc-like disease in the TsK1 mouse model. To the best of our knowledge, there are no reports of MFS and SSc co-existing in a patient. Here, we describe a 46-year-old woman who presented with cardiac failure. She had a family history of MFS. Physical examination revealed marfanoid habitus and scleroderma features. Echocardiography demonstrated dilated cardiomyopathy with aortic root dilatation, aortic regurgitation and mitral regurgitation. Cardiac magnetic resonance imaging was consistent with dilated cardiomyopathy, mid-wall fibrosis at basal septal wall and dilated aortic root. Extractable nuclear antigen panel detected anti-Scl 70. She fulfilled Ghent criteria for MFS and satisfied American College of Rheumatology/ European League Against Rheumatism classification criteria for SSc. Although we do not have the FBN1 sequence in our patient, the co-existence of MFS and SSc in this patient raises the possibility of co-existence of distinct mutations in the FBN1 gene that could affect TGF-β signaling differently, resulting in divergent pathologic consequences - loss of structural integrity in MFS versus increased extracellular matrix deposition in SSc, and different clinical manifestations.
    Matched MeSH terms: Cardiomyopathy, Dilated/etiology
  3. Chin SP, Poey AC, Wong CY, Chang SK, Teh W, Mohr TJ, et al.
    Cytotherapy, 2010;12(1):31-7.
    PMID: 19878080 DOI: 10.3109/14653240903313966
    Bone marrow (BM) mesenchymal stromal cells (MSC) represent a novel therapy for severe heart failure with extensive myocardial scarring, especially when performed concurrently with conventional revascularization. However, stem cells are difficult to transport in culture media without risk of contamination, infection and reduced viability. We tested the feasibility and safety of off-site MSC culture and expansion with freeze-controlled cryopreservation and subsequent rapid thawing of cells immediately prior to implantation to treat severe dilated ischemic cardiomyopathy.
    Matched MeSH terms: Cardiomyopathy, Dilated/etiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links