Displaying all 5 publications

Abstract:
Sort:
  1. Wong SF, Mak JW, Pook PC
    PMID: 17877228
    Cell disruption or lysis is a crucial step to obtain cellular components for various biological studies. We subjected different concentrations of Candida albicans to 5, 10, 15 and 20 cycles of disruption. The degree of cell lysis was observed using light microscopy and the yields obtained were measured and analysed. The optimum extraction with 1 x 10(10) yeast cells/ml was achieved after 5 cycles of disruption with 1.0 mm diameter glass beads at 5,000 rpm. Approximately 80% of the cells were lysed and the protein yield was 6,000 microg/ml. SDS-PAGE analysis revealed approximately 25 distinct protein bands with molecular weights ranging from 8 kDa to 220 kDa. We conclude that this mechanical disruption of fungal cells is a rapid, efficient and inexpensive technique for extracting whole cell proteins from yeast cells.
    Matched MeSH terms: Candida albicans/cytology
  2. Basma AA, Zuraini Z, Sasidharan S
    Asian Pac J Trop Biomed, 2011 Jan;1(1):20-2.
    PMID: 23569719 DOI: 10.1016/S2221-1691(11)60062-2
    To determine the major changes in the microstructure of Candida albicans (C. albicans) after treatment with Euphorbia hirta (E. hirta) L. leaf extract.
    Matched MeSH terms: Candida albicans/cytology
  3. Lim CS, Rosli R, Seow HF, Chong PP
    Int J Med Microbiol, 2011 Aug;301(6):536-46.
    PMID: 21371935 DOI: 10.1016/j.ijmm.2010.12.002
    Systemic infections of Candida albicans, the most prevalent fungal pathogen in humans, are on the rise in recent years. However, the exact mode of pathogenesis of this fungus is still not well elucidated. Previous studies using C. albicans mutants locked into the yeast form via gene deletion found that this form was avirulent and did not induce significant differential expression of host genes in vitro. In this study, a high density of C. albicans was used to infect human umbilical vein endothelial cells (HUVEC), resulting in yeast-form infections, whilst a low density of C. albicans resulted in hyphae infections. Transcriptional profiling of HUVEC response to these infections showed that high densities of C. albicans induced a stronger, broader transcriptional response from HUVEC than low densities of C. albicans infection. Many of the genes that were significantly differentially expressed were involved in apoptosis and cell death. In addition, conditioned media from the high-density infections caused a significant reduction in HUVEC viability, suggesting that certain molecules released during C. albicans and HUVEC interactions were capable of causing cell death. This study has shown that C. albicans yeast-forms, at high densities, cannot be dismissed as avirulent, but instead could possibly contribute to C. albicans pathogenesis.
    Matched MeSH terms: Candida albicans/cytology
  4. Khodavandi A, Alizadeh F, Harmal NS, Sidik SM, Othman F, Sekawi Z, et al.
    FEMS Microbiol Lett, 2011 Feb;315(2):87-93.
    PMID: 21204918 DOI: 10.1111/j.1574-6968.2010.02170.x
    The efficacy of allicin compared with fluconazole in alleviating systemic Candida albicans infections was evaluated both in vitro and in vivo through a systemic candidiasis mouse model. Determination of in vitro minimum inhibitory concentrations (MICs) for different C. albicans isolates revealed that both allicin and fluconazole showed different MICs that ranged from 0.05 to 12.5 μg mL(-1) and 0.25 to 16 μg mL(-1) , respectively. A time-kill study showed a significant effect of allicin (P<0.01) against C. albicans, comparable to that of fluconazole. Scanning electron microscopy observation revealed that, similar to fluconazole, allicin produced structural destruction of C. albicans cell surface at low MIC and lysis or puncture at high MIC concentrations. Treatment of BALB/c mice systemically infected with C. albicans showed that although the allicin treatment (at 5 mg kg(-1) day(-1) ) was slightly less efficacious than fluconazole treatment in terms of the fungal load reduction and host survival time, it was still effective against C. albicans in terms of mean survival time, which increased from 8.4 to 15.8 days. These results demonstrate the efficacy of anticandidal effects of allicin both in vitro and in an animal model of candidiasis and affirm the potential of allicin as an adjuvant therapy to fluconazole.
    Matched MeSH terms: Candida albicans/cytology
  5. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2011 Apr;28(1):132-7.
    PMID: 21602779 MyJurnal
    Swietenia mahogani crude methanolic (SMCM) seed extract was investigated for the antifungal activity against Candida albicans which has not been evaluated previously. The antifungal activity was evaluated against C. albicans via disk diffusion, minimum inhibition concentration (MIC), scanning electron microscope (SEM), transmission electron microscope (TEM) and time killing profile. The MIC value of SMCM seed extract is 12.5 mg/ml. The SEM and TEM findings showed there is morphological changes and cytological destruction of C. albicans at the MIC value. Animal model was used to evaluate the in vivo antifungal activity of SMCM seed extract. The colony forming unit (CFU) were calculated per gram of kidney sample and per ml of blood sample respectively for control, curative and ketaconazole treated groups. There was significant reduction for the CFU/ml of blood and CFU/g of kidney. This indicated that the extract was observed to be effective against C. albicans in vitro and in vivo conditions.
    Matched MeSH terms: Candida albicans/cytology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links