Displaying all 3 publications

Abstract:
Sort:
  1. Wee SL, Clarke AR
    Sci Rep, 2020 09 14;10(1):15004.
    PMID: 32929156 DOI: 10.1038/s41598-020-72209-x
    Males of certain Dacini fruit flies are strongly attracted to, and feed upon, plant secondary compounds such as methyl eugenol, raspberry ketone and zingerone. The consumed lure is generally found to induce physiological and behavioural changes that enhance the mating performance of lure-fed males. Male Bactrocera jarvisi respond strongly to zingerone from a young age, but only weakly respond to raspberry ketone. We hypothesized that this selective lure-response would be reflected in the physiological importance of the lure to the fly. We found that zingerone feeding by young males resulted in significantly greater mating success in competitive mating trials with lure-deprived flies, but the mating advantage was lost in older males. Lure dosage had a significant effect on the duration of the mating advantage, for example when fed 20 µg of zingerone, the advantage lasted only 1 day post-feeding, but when fed of 50 µg zingerone the advantage lasted 7 days. Raspberry ketone feeding did not confer any mating advantage to males except at one dosage (50 µg) for 1 day after feeding. When given a choice, B. jarvisi females preferred to mate with zingerone-fed versus to raspberry ketone-fed males. This study revealed lure, dosage and age of fly at time of lure administration are all important factors for maximising lure-enhanced fruit fly mating performance. These findings contribute to a better theoretical understanding of the evolution of fruit fly-lure interactions and may help improve fruit fly pest management via the Sterile Insect Technique through semiochemical-mediated enhancement of sterile male mating performance.
    Matched MeSH terms: Butanones/pharmacology
  2. Keng-Hong T, Nishida R
    J Chem Ecol, 2005 Mar;31(3):497-507.
    PMID: 15898497
    Bulbophyllum apertum flower (Orchidaceae) releases raspberry ketone (RK) in its fragrance, which attracts males of several fruit fly species belonging to the genus Bactrocera. Besides RK as a major component, the flower contains smaller amounts of 4-(4-hydroxylphenyl)-2-butanol, plus two minor volatile components, veratryl alcohol and vanillyl alcohol. Within the flower, the lip (labellum) had the highest concentration of RK with much smaller quantities present in petals; other flower parts had no detectable RK. Male fruit flies attracted to the flower belong to RK-sensitive species--such as Bactrocera albistragata, B. caudatus, B. cucurbitae (melon fly), and B. tau. Removal and attachment of the pollinarium to a fly's thoracic dorsum occurred when a male of B. albistragata was toppled into the floral column cavity, due to an imbalance caused by it shifting its body weight while feeding on the see-saw lip, and then freeing itself after being momentarily trapped between the lip and column. During this process, the stiff hamulus (the pollinia stalk protruding prominently towards the lip) acted as a crowbar when it was brushed downwards by the toppled fly and lifted the pollinia out of the anther. If the fly was big or long for the small triangular lip, it would not be toppled into the column cavity and would just walk across the column, during which time the pollinarium could be accidentally removed by the fly's leg, resulting in a failed transport of the pollinarium. This suggests an unstable situation, where the orchid relies only on a particular pollinator species in the complex ecosystem where many RK-sensitive species inhabit. Wild males of B. caudatus (most common visitors) captured on Bulbophyllum apertum flowers were found to sequester RK in their bodies as a potential pheromonal and allomonal ingredient. Thus, RK can act either as a floral synomone (pollinarium transported) or kairomone (accidental removal of pollinarium leading to total pollen wastage), depending on the body size of the male fruit flies visiting the flowers.
    Matched MeSH terms: Butanones/pharmacology*
  3. bin Long I, Singh HJ, Rao GJ
    J. Pharmacol. Sci., 2005 Nov;99(3):272-6.
    PMID: 16293937
    The effects of indomethacin and nabumetone on urine and electrolyte excretion in conscious rats were examined. Male Sprague-Dawley rats were housed individually for a five-week duration, consisting of acclimatization, control, experimental, and recovery phases. During the experimental phase, rats were given either indomethacin (1.5 mg . kg(-1) body weight . day(-1) in 0.5 ml saline, n = 10), nabumetone (15 mg . kg(-1) body weight . day(-1) 0.5 ml saline, n = 10), or 0.5 ml saline alone (n = 10) for a period of two weeks. Water and food intake, body weight, urine output, and electrolyte excretions were estimated. Data were analyzed using two-way ANOVA. Urine output in the indomethacin- and nabumetone-treated groups was not different from the controls, but was significantly different between the drug-treated groups (P<0.01). Sodium, potassium, calcium, and magnesium excretions were not different between nabumetone-treated and control rats. However, sodium and potassium excretion was significantly lower in rats receiving indomethacin when compared to the control rats. Calcium and magnesium outputs, although did not differ from the controls, nevertheless decreased significantly with indomethacin (P<0.01). It appears that indomethacin and nabumetone when given at maximum human therapeutic doses may affect urine and electrolyte output in conscious rats.
    Matched MeSH terms: Butanones/pharmacology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links