The rising sea level at the end of the Pleistocene that created the islands of the Sunda Shelf in Indonesia and Malaysia provides a natural experiment in community disassembly and offers insights into the effects of body size and niches on abundance, distribution, and diversity. Since isolation, terrestrial mammal communities of these islands have been reduced by extinction, with virtually no offsetting colonization. We document three empirical patterns of disassembly, all of which are significantly different from null models of random assembly: (i) a diversity-area relationship: the number of taxa is strongly and positively correlated with island area; (ii) nested subset composition: species that occur on small islands tend to be subsets of more diverse communities inhabiting larger islands; and (iii) body size distributions: species of intermediate body sizes occur on the greatest number of islands, and smaller islands have smaller ranges of body sizes, caused by the absence of species of both very large and extremely small size. These patterns reveal the role of body size and other niche characteristics, such as habitat requirements and trophic status, in the differential susceptibility of taxa to extinction.
Both community composition changes due to species redistribution and within-species size shifts may alter body-size structures under climate warming. Here we assess the relative contribution of these processes in community-level body-size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages of geometrid moths (>8000 individuals) on Mt. Kinabalu, Borneo, in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size restructuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which is accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming.
The mosquito Ae. albopictus is usually adapted to the peri-domestic environment and typically breeds outdoors. However, we observed its larvae in most containers within homes in northern peninsular Malaysia. To anticipate the epidemiological implications of this indoor-breeding, we assessed some fitness traits affecting vectorial capacity during colonization process. Specifically, we examined whether Ae. albopictus exhibits increased survival, gonotrophic activity and fecundity due to the potential increase in blood feeding opportunities.
This study examined the fecundity, oviposition, nymphal development and longevity of field-collected samples of the tropical bedbug, Cimex hemipterus (Fabricius) (Hemiptera: Cimicidae). Under environmental conditions of 26+/-2 degrees C, 70 +/- 5% relative humidity and a 12-h photoperiod, with bloodmeals provided by a human host, six strains of tropical bedbug had a fecundity of up to 50 eggs per lifetime, over 11-14 oviposition cycles. Increased feeding frequency improved fecundity. After feeding and mating, adult females normally took 2-3 days to produce a first batch of eggs. The oviposition period lasted 2-7 days before cessation of the oviposition cycle. The egg incubation period usually lasted 5-7 days before the emergence of first instars. The nymphs underwent five stadia (the first four of which each took 3-4 days, whereas the last took 4-5 days) before becoming adults at a sex ratio of 1 : 1. More than five bloodmeals were required by the nymphs to ensure a successful moult. Unmated adults lived significantly longer than mated adults (P < 0.05). Unmated females lived up to almost 7 months, but the longevity of mated males and females did not differ significantly (P > 0.05).
The objective of this cadaveric study is to determine the safety and outcome of thoracic pedicle screw placement in Asians using the funnel technique. Pedicle screws have superior biomechanical as well as clinical data when compared to other methods of instrumentation. However, misplacement in the thoracic spine can result in major neurological implications. There is great variability of the thoracic pedicle morphometry between the Western and the Asian population. The feasibility of thoracic pedicle screw insertion in Asians has not been fully elucidated yet. A pre-insertion radiograph was performed and surgeons were blinded to the morphometry of the thoracic pedicles. 240 pedicle screws were inserted in ten Asian cadavers from T1 to T12 using the funnel technique. 5.0 mm screws were used from T1 to T6 while 6.0 mm screws were used from T7 to T12. Perforations were detected by direct visualization via a wide laminectomy. The narrowest pedicles are found between T3 and T6. T5 pedicle width is smallest measuring 4.1 +/- 1.3 mm. There were 24 (10.0%) Grade 1 perforations and only 1 (0.4%) Grade 2 perforation. Grade 2 or worse perforation is considered significant perforation which would threaten the neural structures. There were twice as many lateral and inferior perforations compared to medial perforations. 48.0% of the perforations occurred at T1, T2 and T3 pedicles. Pedicle fracture occurred in 10.4% of pedicles. Intra-operatively, the absence of funnel was found in 24.5% of pedicles. In conclusion, thoracic pedicle screws using 5.0 mm at T1-T6 and 6.0 mm at T7-T12 can be inserted safely in Asian cadavers using the funnel technique despite having smaller thoracic pedicle morphometry.