Displaying all 14 publications

Abstract:
Sort:
  1. Mengting Z, Duan L, Zhao Y, Song Y, Xia S, Gikas P, et al.
    J Environ Manage, 2023 Nov 01;345:118772.
    PMID: 37597373 DOI: 10.1016/j.jenvman.2023.118772
    This work investigates the use of novel BiOI@ZIF-8 nanocomposite for the removal of acetaminophen (Ace) from synthetic wastewater. The samples were analyzed using FTIR, XRD, XPS, DRS, PL, FESEM-EDS, and ESR techniques. The effects of the loading capacity of ZIF-8 on the photocatalytic oxidation performance of bismuth oxyiodide (BiOI) were studied. The photocatalytic degradation of Ace was maximized by optimizing pH, reaction time and the amount of photocatalyst. On this basis, the removal mechanisms of the target pollutant by the nanocomposite and its photodegradation pathways were elucidated. Under optimized conditions of 1 g/L of composite, pH 6.8, and 4 h of reaction time, it was found that the BiOI@ZIF-8 (w/w = 1:0.01) nanocomposite exhibited the highest Ace removal (94%), as compared to that of other loading ratios at the same Ace concentration of 25 mg/L. Although this result was encouraging, the treated wastewater still did not satisfy the required statutory of 0.2 mg/L. It is suggested that the further biological processes need to be adopted to complement Ace removal in the samples. To sustain its economic viability for wastewater treatment, the spent composite still could be reused for consecutive five cycles with 82% of regeneration efficiency. Overall, this series of work shows that the nanocomposite was a promising photocatalyst for Ace removal from wastewater samples.
    Matched MeSH terms: Bismuth/chemistry
  2. Sidek HA, Bahari HR, Halimah MK, Yunus WM
    Int J Mol Sci, 2012;13(4):4632-41.
    PMID: 22606000 DOI: 10.3390/ijms13044632
    This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.
    Matched MeSH terms: Bismuth/chemistry*
  3. Oo HM, Mohamed-Kamari H, Wan-Yusoff WM
    Int J Mol Sci, 2012;13(4):4623-31.
    PMID: 22605999 DOI: 10.3390/ijms13044623
    A series of binary tellurite based glasses (Bi(2)O(3))(x) (TeO(2))(100-) (x) was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi(3+) increase, this is due to the increased polarization of the ions Bi(3+) and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, E(opt) decreases while the refractive index increases when the ion Bi(3+) content increases.
    Matched MeSH terms: Bismuth/chemistry*
  4. Abdullah AH, Abdullah EA, Zainal Z, Hussein MZ, Ban TK
    Water Sci Technol, 2012;65(9):1632-8.
    PMID: 22508126 DOI: 10.2166/wst.2012.057
    The adsorption of methyl orange dye from aqueous solution onto penta-bismuth hepta-oxide nitrate, Bi(5)O(7)NO(3), synthesized by precipitation method, was studied in a batch adsorption system. The effects of operation parameters such as adsorbent dose, initial dye concentration, pH and temperature were investigated. The adsorption equilibrium and mechanism of adsorption was evaluated by Langmuir and Freundlich isotherm and different kinetic models, respectively. The results indicate that adsorption is highly dependent on all operation parameters. At optimum conditions, the adsorption capacity was found to be 18.9 mg/g. The adsorption data fits well with the Langmuir isotherm model indicating monolayer coverage of adsorbate molecules on the surface of Bi(5)O(7)NO(3). The kinetic studies show that the adsorption process is a second-order kinetic reaction. Although intra-particle diffusion limits the rate of adsorption, the multi-linearity plot of intra-particle model shows the importance of both film and intra-particle diffusion as the rate-limiting steps of the dye removal. Thermodynamic parameters show that the adsorption process is endothermic, spontaneous and favourable at high temperature.
    Matched MeSH terms: Bismuth/chemistry*
  5. Bahari HR, Sidek HA, Adikan FR, Yunus WM, Halimah MK
    Int J Mol Sci, 2012;13(7):8609-14.
    PMID: 22942723 DOI: 10.3390/ijms13078609
    Heavy metal oxide glasses, containing bismuth and/or lead in their glass structure are new alternatives for rare eart (RE) doped hosts. Hence, the study of the structure of these vitreous systems is of great interest for science and technology. In this research work, GeO(2)-PbO-Bi(2)O(3) glass host doped with Er(3+)/Yb(3+) ions was synthesized by a conventional melt quenching method. The Fourier transform infrared (FTIR) results showed that PbO and Bi(2)O(3) participate with PbO(4) tetragonal pyramids and strongly distort BiO(6) octahedral units in the glass network, which subsequently act as modifiers in glass structure. These results also confirmed the existence of both four and six coordination of germanium oxide in glass matrix.
    Matched MeSH terms: Bismuth/chemistry*
  6. Ghazali MS, Zakaria A, Rizwan Z, Kamari HM, Hashim M, Zaid MH, et al.
    Int J Mol Sci, 2011;12(3):1496-504.
    PMID: 21673903 DOI: 10.3390/ijms12031496
    The optical band-gap energy (E(g)) is an important feature of semiconductors which determines their applications in optoelectronics. Therefore, it is necessary to investigate the electronic states of ceramic ZnO and the effect of doped impurities under different processing conditions. E(g) of the ceramic ZnO + xBi(2)O(3) + xTiO(2), where x = 0.5 mol%, was determined using a UV-Vis spectrophotometer attached to a Reflectance Spectroscopy Accessory for powdered samples. The samples was prepared using the solid-state route and sintered at temperatures from 1140 to 1260 °C for 45 and 90 minutes. E(g) was observed to decrease with an increase of sintering temperature. XRD analysis indicated hexagonal ZnO and few small peaks of intergranular layers of secondary phases. The relative density of the sintered ceramics decreased and the average grain size increased with the increase of sintering temperature.
    Matched MeSH terms: Bismuth/chemistry*
  7. Abdullah AH, Moey HJ, Yusof NA
    J Environ Sci (China), 2012;24(9):1694-701.
    PMID: 23520879
    Visible-light driven photocatalyst bismuth vanadate (BiVO4) photocatalyst was synthesized by the polyol route using ethylene glycol. The precipitate was washed, dried and calcined at 450 degrees C for 3 hr. The sample was characterized by X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), zeta potential, surface area (BET method) and band gap energy via diffuse reflectance spectroscopy (DRS). The synthesized BiVO4 has a monoclinic phase with a surface area of 4.3 m2/g and a band gap energy of 2.46 eV. A majority of the particles were in the range of 90-130 nm as obtained from the particle size distribution histrogram. The efficiency of the sample as a visible-light driven photocatalyst was examined by photodegrading Methylene Blue (MB). The effects of some operational photodegradation parameters such as mass loading, initial dye concentration and pH were also examined. Experimental design methodology was applied by response surface modeling and optimization of the removal of MB. The multivariate experimental design was employed to develop a quadratic model as a functional relationship between the percentage removal of MB and three experimental factors (BiVO4 loading, MB initial concentration and pH). The percentage removal of MB approached 67.21% under optimized conditions. In addition, a satisfactory goodness-of-fit was achieved between the,predictive and the experimental results.
    Matched MeSH terms: Bismuth/chemistry*
  8. Rahman NJA, Ramli A, Jumbri K, Uemura Y
    Sci Rep, 2019 11 07;9(1):16223.
    PMID: 31700157 DOI: 10.1038/s41598-019-52771-9
    Bifunctional heterogeneous catalysts have a great potential to overcome the shortcomings of homogeneous and enzymatic catalysts and simplify the biodiesel production processes using low-grade, high-free-fatty-acid feedstock. In this study, we developed ZrO2-based bifunctional heterogeneous catalysts for simultaneous esterification and transesterification of microalgae to biodiesel. To avoid the disadvantage of the low surface area of ZrO2, the catalysts were prepared via a surfactant-assisted sol-gel method, followed by hydrothermal treatments. The response surface methodology central composite design was employed to investigate various factors, like the surfactant/Zr molar ratio, pH, aging time, and temperature on the ZrO2 surface area. The data were statistically analyzed to predict the optimal combination of factors, and further experiments were conducted for verification. Bi2O3 was supported on ZrO2 via the incipient wetness impregnation method. The catalysts were characterized by a variety of techniques, which disclosed that the surfactant-assisted ZrO2 nanoparticles possess higher surface area, better acid-base properties, and well-formed pore structures than bare ZrO2. The highest yield of fatty acid methyl esters (73.21%) was achieved using Bi2O3/ZrO2(CTAB), and the catalytic activity of the developed catalysts was linearly correlated with the total densities of the acidic and basic sites. The mechanism of the simultaneous reactions was also discussed.
    Matched MeSH terms: Bismuth/chemistry
  9. Dorraj M, Zakaria A, Abdollahi Y, Hashim M, Moosavi S
    ScientificWorldJournal, 2014;2014:741034.
    PMID: 25243225 DOI: 10.1155/2014/741034
    In ZnO-based low voltage varistor, the two essential features of microstructure determining its nonlinear response are the formation Bi-enriched active grain boundaries as well as a controlled ZnO grain size by secondary spinel-type phases. Besides, the microstructure and phase composition are strongly affected by the dopant concentration during sintering process. In this study, the optimal dopant levels of Bi2O3, TiO2, and Sb2O3 to achieve maximized nonlinear electrical property (alpha) were quantified by the response surface methodology (RSM). RSM was also used to understand the significance and interaction of the factors affecting the response. Variables were determined as the molar ratio of Bi2O3, TiO2, and Sb2O3. The alpha was chosen as response in the study. The 5-level-3-factor central composite design, with 20 runs, was used to conduct the experiments by ball milling method. A quadratic model was established as a functional relationship between three independent variables and alpha. According to the results, the optimum values of Bi2O3, TiO2, and Sb2O3 were obtained 0.52, 0.50, and 0.30, respectively. Under optimal conditions the predicted alpha (9.47) was calculated using optimal coded values from the model and the theoretical value is in good agreement with the value (9.43) obtained by confirmation experiment.
    Matched MeSH terms: Bismuth/chemistry*
  10. Abdullah EA, Abdullah AH, Zainal Z, Hussein MZ, Ban TK
    J Environ Sci (China), 2012;24(10):1876-84.
    PMID: 23520859
    A modified hydrophilic penta-bismuth hepta-oxide nitrate (Bi5O7NO3) surface was synthesized via a precipitation method using TiO2 and Ag as modified agents. The synthesized product was characterized by different analytical techniques. The removal efficiency was evaluated using mono- and di-sulphonated azo dyes as model pollutants. Different kinetic, isotherm and diffusion models were chosen to describe the adsorption process. X-ray photoelectron spectroscopy (XPS) results revealed no noticeable differences in the chemical states of modified adsorbent when compared to pure Bi5O7NO3; however, the presence of hydrophilic centres such as TiO2 and Ag developed positively charged surface groups and improved its adsorption performance to a wide range of azo dyes. Dyes removal was found to be a function of adsorbent dosage, initial dye concentration, solution pH and temperature. The reduction of Langmuir 1,2-mixed order kinetics to the second or first-order kinetics could be successfully used to describe the adsorption of dyes onto the modified adsorbent. Mass transfer can be described by intra-particle diffusion at a certain stage, but it was not the rate limiting step that controlled the adsorption process. Homogenous behavior of adsorbent surface can be explored by applying Langmuir isotherm to fit the adsorption data.
    Matched MeSH terms: Bismuth/chemistry*
  11. Zen DI, Saidin N, Damanhuri SS, Harun SW, Ahmad H, Ismail MA, et al.
    Appl Opt, 2013 Feb 20;52(6):1226-9.
    PMID: 23434993 DOI: 10.1364/AO.52.001226
    We demonstrate mode locking of a thulium-bismuth codoped fiber laser (TBFL) operating at 1901.6 nm, using a graphene-based saturable absorber (SA). In this work, a single layer graphene is mechanically exfoliated using the scotch tape method and directly transferred onto the surface of a fiber pigtail to fabricate the SA. The obtained Raman spectrum characteristic indicates that the graphene on the core surface has a single layer. At 1552 nm pump power of 869 mW, the mode-locked TBFL self starts to generate an optical pulse train with a repetition rate of 16.7 MHz and pulse width of 0.37 ps. This is a simple, low-cost, stable, and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics.
    Matched MeSH terms: Bismuth/chemistry*
  12. Talik Sisin NN, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, et al.
    Int J Nanomedicine, 2020;15:7805-7823.
    PMID: 33116502 DOI: 10.2147/IJN.S269214
    Purpose: This study aimed to quantify synergetic effects induced by bismuth oxide nanoparticles (BiONPs), cisplatin (Cis) and baicalein-rich fraction (BRF) natural-based agent on the reactive oxygen species (ROS) generation and radiosensitization effects under irradiation of clinical radiotherapy beams of photon, electron and HDR-brachytherapy. The combined therapeutic responses of each compound and clinical radiotherapy beam were evaluated on breast cancer and normal fibroblast cell line.

    Methods: In this study, individual BiONPs, Cis, and BRF, as well as combinations of BiONPs-Cis (BC), BiONPs-BRF (BB) and BiONPs-Cis-BRF (BCB) were treated to the cells before irradiation using HDR brachytherapy with 0.38 MeV iridium-192 source, 6 MV photon beam and 6 MeV electron beam. The individual or synergetic effects from the application of the treatment components during the radiotherapy were elucidated by quantifying the ROS generation and radiosensitization effects on MCF-7 and MDA-MB-231 breast cancer cell lines as well as NIH/3T3 normal cell line.

    Results: The ROS generated in the presence of Cis stimulated the most substantial amount of ROS compared to the BiONPs and BRF. Meanwhile, the combination of the components had induced the higher ROS levels for photon beam than the brachytherapy and electron beam. The highest ROS enhancement relative to the control is attributable to the presence of BC combination in MDA-MB-231 cells, in comparison to the BB and BCB combinations. The radiosensitization effects which were quantified using the sensitization enhancement ratio (SER) indicate the highest value by BC in MCF-7 cells, followed by BCB and BB treatment. The radiosensitization effects are found to be more prominent for brachytherapy in comparison to photon and electron beam.

    Conclusion: The BiONPs, Cis and BRF are the potential radiosensitizers that could improve the efficiency of radiotherapy to eradicate the cancer cells. The combination of these potent radiosensitizers might produce multiple effects when applied in radiotherapy. The BC combination is found to have the highest SER, followed by the BCB combination. This study is also the first to investigate the effect of BRF in combination with BiONPs (BB) and BC (BCB) treatments.

    Matched MeSH terms: Bismuth/chemistry*
  13. Ishak DH, Ooi KK, Ang KP, Akim AM, Cheah YK, Nordin N, et al.
    J Inorg Biochem, 2014 Jan;130:38-51.
    PMID: 24176918 DOI: 10.1016/j.jinorgbio.2013.09.018
    The compound with R=CH2CH3 in Bi(S2CNR2)3 (1) is highly cytotoxic against a range of human carcinoma, whereas that with R=CH2CH2OH (2) is considerably less so. Both 1 and 2 induce apoptosis in HepG2 cells with some evidence for necrosis induced by 2. Based on DNA fragmentation, caspase activities and human apoptosis PCR-array analysis, both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. While both compounds activate mitochondrial and FAS apoptotic pathways, compound 1 was also found to induce another death receptor-dependent pathway by induction of CD40, CD40L and TNF-R1 (p55). Further, 1 highly expressed DAPK1, a tumour suppressor, with concomitant down-regulation of XIAP and NF-κB. Cell cycle arrest at the S and G2/M phases correlates with the inhibition of the growth of HepG2 cells. The cell invasion rate of 2 is 10-fold higher than that of 1, a finding correlated with the down-regulation of survivin and XIAP expression by 1. Compounds 1 and 2 interact with DNA through different binding motifs with 1 interacting with AT- or TA-specific sites followed by inhibition of restriction enzyme digestion; 2 did not interfere with any of the studied restriction enzymes.
    Matched MeSH terms: Bismuth/chemistry*
  14. Farea M, Masudi S, Wan Bakar WZ
    Aust Endod J, 2010 Aug;36(2):48-53.
    PMID: 20666748 DOI: 10.1111/j.1747-4477.2009.00187.x
    The aim of this study was to evaluate in vitro the apical sealing ability of cold lateral and system B root filling techniques using dye penetration. Eighty-six extracted single-rooted human teeth were prepared and randomly divided into two experimental groups to be obturated by cold lateral condensation (n = 33) and system B (n = 33). The remaining 20 teeth served as positive and negative controls. The roots were embedded for 72 h in methylene blue dye solution and sectioned transversely for dye penetration evaluation using stereomicroscope. The results of this study showed that cold lateral condensation leaked significantly more (P < 0.001) than system B technique.
    Matched MeSH terms: Bismuth/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links