Displaying all 4 publications

Abstract:
Sort:
  1. Arigbabu OA, Ahmad SM, Adnan WA, Yussof S, Iranmanesh V, Malallah FL
    ScientificWorldJournal, 2014;2014:460973.
    PMID: 25121120 DOI: 10.1155/2014/460973
    Soft biometrics can be used as a prescreening filter, either by using single trait or by combining several traits to aid the performance of recognition systems in an unobtrusive way. In many practical visual surveillance scenarios, facial information becomes difficult to be effectively constructed due to several varying challenges. However, from distance the visual appearance of an object can be efficiently inferred, thereby providing the possibility of estimating body related information. This paper presents an approach for estimating body related soft biometrics; specifically we propose a new approach based on body measurement and artificial neural network for predicting body weight of subjects and incorporate the existing technique on single view metrology for height estimation in videos with low frame rate. Our evaluation on 1120 frame sets of 80 subjects from a newly compiled dataset shows that the mentioned soft biometric information of human subjects can be adequately predicted from set of frames.
    Matched MeSH terms: Biometric Identification/methods*
  2. Maruthapillai V, Murugappan M
    PLoS One, 2016;11(2):e0149003.
    PMID: 26859884 DOI: 10.1371/journal.pone.0149003
    In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.
    Matched MeSH terms: Biometric Identification/methods*
  3. Abdulameer MH, Sheikh Abdullah SN, Othman ZA
    ScientificWorldJournal, 2014;2014:879031.
    PMID: 25165748 DOI: 10.1155/2014/879031
    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.
    Matched MeSH terms: Biometric Identification/methods*
  4. Kruszka P, Addissie YA, McGinn DE, Porras AR, Biggs E, Share M, et al.
    Am J Med Genet A, 2017 Apr;173(4):879-888.
    PMID: 28328118 DOI: 10.1002/ajmg.a.38199
    22q11.2 deletion syndrome (22q11.2 DS) is the most common microdeletion syndrome and is underdiagnosed in diverse populations. This syndrome has a variable phenotype and affects multiple systems, making early recognition imperative. In this study, individuals from diverse populations with 22q11.2 DS were evaluated clinically and by facial analysis technology. Clinical information from 106 individuals and images from 101 were collected from individuals with 22q11.2 DS from 11 countries; average age was 11.7 and 47% were male. Individuals were grouped into categories of African descent (African), Asian, and Latin American. We found that the phenotype of 22q11.2 DS varied across population groups. Only two findings, congenital heart disease and learning problems, were found in greater than 50% of participants. When comparing the clinical features of 22q11.2 DS in each population, the proportion of individuals within each clinical category was statistically different except for learning problems and ear anomalies (P 
    Matched MeSH terms: Biometric Identification/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links