Displaying all 8 publications

Abstract:
Sort:
  1. An J, Nam J, Kim B, Lee HS, Kim BH, Chang IS
    Bioresour Technol, 2015 Aug;190:175-81.
    PMID: 25941759 DOI: 10.1016/j.biortech.2015.04.071
    The effect of two different anode-embedding orientations, lengthwise- and widthwise-embedded anodes was explored, on the performance of sediment microbial fuel cells (SMFCs) using a chessboard anode. The maximum current densities and power densities in SMFCs having lengthwise-embedded anodes (SLA1-SLA10) varied from 38.2mA/m(2) to 121mA/m(2) and from 5.5mW/m(2) to 20mW/m(2). In comparison, the maximum current densities and maximum power densities in SMFCs having anodes widthwise-embedded between 0cm to 8cm (SWA2-SWA5) increased from 82mA/m(2) to 140mA/m(2) and from 14.7mW/m(2) to 31.1mW/m(2) as the anode depth became deeper. Although there was a difference in the performance among SWA5-SWA10, it was considered negligible. Hence, it is concluded that it is important to embed anodes widthwise at the specific anode depths, in order to improve of SMFC performance. Chessboard anode used in this work could be a good option for the determination of optimal anode depths.
    Matched MeSH terms: Bioelectric Energy Sources/microbiology*
  2. Leung DHL, Lim YS, Uma K, Pan GT, Lin JH, Chong S, et al.
    Appl Biochem Biotechnol, 2021 Apr;193(4):1170-1186.
    PMID: 33200267 DOI: 10.1007/s12010-020-03469-6
    Microbial fuel cell (MFC) is a promising technology that utilizes exoelectrogens cultivated in the form of biofilm to generate power from various types of sources supplied. A metal-reducing pathway is utilized by these organisms to transfer electrons obtained from the metabolism of substrate from anaerobic respiration extracellularly. A widely established model organism that is capable of extracellular electron transfer (EET) is Shewanella oneidensis. This review highlights the strategies used in the transformation of S. oneidensis and the recent development of MFC in terms of intervention through genetic modifications. S. oneidensis was genetically engineered for several aims including the study on the underlying mechanisms of EET, and the enhancement of power generation and wastewater treating potential when used in an MFC. Through engineering S. oneidensis, genes responsible for EET are identified and strategies on enhancing the EET efficiency are studied. Overexpressing genes related to EET to enhance biofilm formation, mediator biosynthesis, and respiration appears as one of the common approaches.
    Matched MeSH terms: Bioelectric Energy Sources/microbiology*
  3. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al.
    Bioresour Technol, 2017 Apr;229:53-62.
    PMID: 28107722 DOI: 10.1016/j.biortech.2017.01.006
    Microalgae have received much interest as a biofuel feedstock in response to the uprising energy crisis, climate change and depletion of natural sources. Development of microalgal biofuels from microalgae does not satisfy the economic feasibility of overwhelming capital investments and operations. Hence, high-value co-products have been produced through the extraction of a fraction of algae to improve the economics of a microalgae biorefinery. Examples of these high-value products are pigments, proteins, lipids, carbohydrates, vitamins and anti-oxidants, with applications in cosmetics, nutritional and pharmaceuticals industries. To promote the sustainability of this process, an innovative microalgae biorefinery structure is implemented through the production of multiple products in the form of high value products and biofuel. This review presents the current challenges in the extraction of high value products from microalgae and its integration in the biorefinery. The economic potential assessment of microalgae biorefinery was evaluated to highlight the feasibility of the process.
    Matched MeSH terms: Bioelectric Energy Sources/microbiology
  4. Kim BH, Lim SS, Daud WR, Gadd GM, Chang IS
    Bioresour Technol, 2015 Aug;190:395-401.
    PMID: 25976915 DOI: 10.1016/j.biortech.2015.04.084
    The cathode reaction is one of the most important limiting factors in bioelectrochemical systems even with precious metal catalysts. Since aerobic bacteria have a much higher affinity for oxygen than any known abiotic cathode catalysts, the performance of a microbial fuel cell can be improved through the use of electrochemically-active oxygen-reducing bacteria acting as the cathode catalyst. These consume electrons available from the electrode to reduce the electron acceptors present, probably conserving energy for growth. Anaerobic bacteria reduce protons to hydrogen in microbial electrolysis cells (MECs). These aerobic and anaerobic bacterial activities resemble those catalyzing microbially-influenced corrosion (MIC). Sulfate-reducing bacteria and homoacetogens have been identified in MEC biocathodes. For sustainable operation, microbes in a biocathode should conserve energy during such electron-consuming reactions probably by similar mechanisms as those occurring in MIC. A novel hypothesis is proposed here which explains how energy can be conserved by microbes in MEC biocathodes.
    Matched MeSH terms: Bioelectric Energy Sources/microbiology*
  5. Kardi SN, Ibrahim N, Darzi GN, Rashid NAA, Villaseñor J
    Environ Sci Pollut Res Int, 2017 Aug;24(23):19444-19457.
    PMID: 28580546 DOI: 10.1007/s11356-017-9204-1
    This work studied the performance of a laboratory-scale microbial fuel cell (MFC) using a bioanode that consisted of treated clinoptilolite fine powder coated onto graphite felt (TC-MGF). The results were compared with another similar MFC that used a bare graphite felt (BGF) bioanode. The anode surfaces provided active sites for the adhesion of the bacterial consortium (NAR-2) and the biodegradation of mono azo dye C.I. Acid Red 27. As a result, bioelectricity was generated in both MFCs. A 98% decolourisation rate was achieved using the TC-MGF bioanode under a fed-batch operation mode. Maximum power densities for BGF and TC-MGF bioanodes were 458.8 ± 5.0 and 940.3 ± 4.2 mW m-2, respectively. GC-MS analyses showed that the dye was readily degraded in the presence of the TC-MGF bioanode. The MFC using the TC-MGF bioanode showed a stable biofilm with no biomass leached out for more than 300 h operation. In general, MFC performance was substantially improved by the fabricated TC-MGF bioanode. It was also found that the TC-MGF bioanode with the stable biofilm presented the nature of exopolysaccharide (EPS) structure, which is suitable for the biodegradation of the azo dye. In fact, the EPS facilitated the shuttling of electrons to the bioanode for the generation of bioelectricity.
    Matched MeSH terms: Bioelectric Energy Sources/microbiology*
  6. Kardi SN, Ibrahim N, Rashid NA, Darzi GN
    Environ Sci Pollut Res Int, 2016 Feb;23(4):3358-64.
    PMID: 26490910 DOI: 10.1007/s11356-015-5538-8
    Microbial fuel cells (MFCs) represent one of the most attractive and eco-friendly technologies that convert chemical bond energy derived from organic matter into electrical power by microbial catabolic activity. This paper presents the use of a H-type MFC involving a novel NAR-2 bacterial consortium consisting of Citrobacter sp. A1, Enterobacter sp. L17 and Enterococcus sp. C1 to produce electricity whilst simultaneously decolourising acid red 27 (AR27) as a model dye, which is also known as amaranth. In this setup, the dye AR27 is mixed with modified P5 medium (2.5 g/L glucose and 5.0 g/L nutrient broth) in the anode compartment, whilst phosphate buffer solution (PBS) pH 7 serves as a catholyte in the cathode compartment. After several electrochemical analyses, the open circuit voltage (OCV) for 0.3 g/L AR27 with 24-h retention time at 30 °C was recorded as 0.950 V, whereas (93%) decolourisation was achieved in 220-min operation. The maximum power density was reached after 48 h of operation with an external load of 300 Ω. Scanning electron microscopy (SEM) analysis revealed the surface morphology of the anode and the bacterial adhesion onto the electrode surface. The results of this study indicate that the decolourisation of AR27 dye and electrical power generation was successfully achieved in a MFC operated by a bacterial consortium. The consortium of bacteria was able to utilise AR27 in a short retention time as an electron acceptor and to shuttle the electrons to the anode surface for bioelectricity generation.
    Matched MeSH terms: Bioelectric Energy Sources/microbiology*
  7. Nor MH, Mubarak MF, Elmi HSh, Ibrahim N, Wahab MF, Ibrahim Z
    Bioresour Technol, 2015 Aug;190:458-65.
    PMID: 25799955 DOI: 10.1016/j.biortech.2015.02.103
    A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge.
    Matched MeSH terms: Bioelectric Energy Sources/microbiology*
  8. Jong BC, Liew PW, Lebai Juri M, Kim BH, Mohd Dzomir AZ, Leo KW, et al.
    Lett Appl Microbiol, 2011 Dec;53(6):660-7.
    PMID: 21967346 DOI: 10.1111/j.1472-765X.2011.03159.x
    To evaluate the bioenergy generation and the microbial community structure from palm oil mill effluent using microbial fuel cell.
    Matched MeSH terms: Bioelectric Energy Sources/microbiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links