Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Nafiah MA, Mukhtar MR, Omar H, Ahmad K, Morita H, Litaudon M, et al.
    Molecules, 2011 Apr 20;16(4):3402-9.
    PMID: 21512448 DOI: 10.3390/molecules16043402
    A phytochemical study of the bark of Alseodaphne perakensis has yielded three aporphine alkaloids: the new compound N-cyanomethylnorboldine (1), and the two known alkaloids N-methyllaurotetanine (2) and norboldine (3). The isolation was achieved by chromatographic techniques and the structural elucidation was performed via spectral methods, notably 1D- and 2D-NMR, UV, IR, and HRFABMS. The vasorelaxation activity of compound 1 has been studied.
    Matched MeSH terms: Aporphines/isolation & purification*; Aporphines/pharmacology; Aporphines/chemistry
  2. Mukhtar MR, Hadi AH, Rondeau D, Richomme P, Litaudon M, Mustafa MR, et al.
    Nat Prod Res, 2008;22(11):921-6.
    PMID: 18629705 DOI: 10.1080/14786410701642821
    The phytochemical study of the bark of Malaysian Phoebe scortechinii (Lauraceae) has resulted in the isolation and identification of two new proaporphine alkaloids; (+)-scortechiniine A (1) and (+)-scortechiniine B (2) together with two known proaporphines; (-)-hexahydromecambrine A (3), (-)-norhexahydromecambrine A (4), and one aporphine; norboldine (5). Structural elucidations of these alkaloids were performed using spectroscopic methods especially 1D and 2D (1)H and (13)C NMR.
    Matched MeSH terms: Aporphines/chemistry*
  3. Hasliza Yusof, Laily Din, Zuriati Zakaria, Kamarudin Mat Salleh
    A new species from the Goniothalamus genus, G. tomentosus, was investigated. Two alkaloids, aristololactam BII 1 and ouregidione 2 together with a stigmasterol isolated from the stem bark and roots were identified using spectroscopic techniques.
    Spesies baru daripada genus Gonitothalamus, G. tomemtosus telah dikaji. Dua sebatian alkaloid aristololaktam BII 1 dan ouregidion 2 serta stigmasterol yang dipencilkan daripada kulit batang dan akar telah ditentukan dengan menggunakan teknik spektroskopi.
    Matched MeSH terms: Aporphines
  4. Taha H, Hadi AH, Nordin N, Najmuldeen IA, Mohamad K, Shirota O, et al.
    Chem Pharm Bull (Tokyo), 2011;59(7):896-7.
    PMID: 21720044
    Pseuduvarines A (1) and B (2), two new dioxoaporphine alkaloids with an amino moiety, were isolated from the stem bark of Pseuduvaria rugosa and their structures were elucidated by combination of 2D-NMR spectroscopic analysis. Pseuduvarines A (1) and B (2) showed cytotoxicity against MCF7, HepG2, and HL-60 (1: IC₅₀, 0.9, 21.7, and >50.0 µM, respectively, 2: IC₅₀ >50.0, 15.7, and 12.4 µM, respectively).
    Matched MeSH terms: Aporphines/isolation & purification; Aporphines/pharmacology; Aporphines/chemistry*
  5. Munusamy V, Yap BK, Buckle MJ, Doughty SW, Chung LY
    Chem Biol Drug Des, 2013 Feb;81(2):250-6.
    PMID: 23039820 DOI: 10.1111/cbdd.12069
    Selective blockade of the serotonin 5-HT(2A) receptor is a useful therapeutic approach for a number of disorders, including schizophrenia, insomnia and ischaemic heart disease. A series of aporphines were docked into a homology model of the rat 5-HT(2A) receptor using AutoDock. Selected compounds with high in silico binding affinities were screened in vitro using radioligand-binding assays against rat serotonin (5-HT(1A) and 5-HT(2A)) and dopamine (D1 and D2) receptors. (R)-Roemerine and (±)-nuciferine were found to have high affinity for the 5-HT(2A) receptor (K(i) = 62 and 139 nM, respectively), with (R)-roemerine showing 20- to 400-fold selectivity for the 5-HT(2A) receptor over the 5-HT(1A), D1 and D2 receptors. Investigation into the ligand-receptor interactions suggested that the selectivity of (R)-roemerine is due to it having stronger H-bonding and dipole-dipole interactions with several of the key residues in the 5-HT(2A) receptor-binding site.
    Matched MeSH terms: Aporphines/metabolism; Aporphines/chemistry*
  6. Mukhtar MR, Aziz AN, Thomas NF, Hadi AH, Litaudon M, Awang K
    Molecules, 2009;14(3):1227-33.
    PMID: 19325519 DOI: 10.3390/molecules14031227
    The stem bark of Phoebe grandis afforded one new oxoproaporphine; (-)-grandine A (1), along with six known isoquinoline alkaloids: (-)-8,9-dihydrolinearisine (2), boldine, norboldine, lauformine, scortechiniine A and scortechiniine B. In addition to that of the new compound, complete 1H- and 13C-NMR data of the tetrahydroproaporphine (-)-8,9-dihydrolinearisine (2) is also reported. The alkaloids' structures were elucidated primarily by means of high field 1D- and 2D-NMR and HRMS spectral data.
    Matched MeSH terms: Aporphines/isolation & purification; Aporphines/chemistry*
  7. Jantan I, Raweh SM, Yasin YH, Murad S
    Phytother Res, 2006 Jun;20(6):493-6.
    PMID: 16619347
    Six aporphine and one phenanthrenoid alkaloids isolated from Aromadendron elegans Blume were investigated for their ability to inhibit arachidonic acid (AA), collagen and ADP induced platelet aggregation in human whole blood. The antiplatelet activity of the compounds was measured in vitro by the Chrono Log whole blood aggregometer using an electrical impedance method. Of the compounds tested, (-)-N-acetylnornuciferine, (-)-N-acetylanonaine and 1-(N-acetyl-N-methylamino)ethyl-3,4,6-trimethoxy-7-hydroxyphenanthrene showed strong inhibition on platelet aggregation caused by all three inducers. (-)-N-acetylanonaine was the most effective antiplatelet compound as it inhibited both arachidonic acid, collagen and ADP-induced platelet aggregation with IC(50) values of 66.1, 95.1 and 80.6 microm, respectively.
    Matched MeSH terms: Aporphines/isolation & purification; Aporphines/pharmacology
  8. Mollataghi A, Coudiere E, Hadi AH, Mukhtar MR, Awang K, Litaudon M, et al.
    Fitoterapia, 2012 Mar;83(2):298-302.
    PMID: 22119096 DOI: 10.1016/j.fitote.2011.11.009
    Phytochemical investigation of Beilschmiedia alloiophylla has resulted in the isolation of one new alkaloid, 2-hydroxy-9-methoxyaporphine (1), and ten known natural products, laurotetanine (2), liriodenine (3), boldine (4), secoboldine (5), isoboldine (6), asimilobine (7), oreobeiline (8), 6-epioreobeiline (9), β-amyrone (10), and (S)-3-methoxynordomesticine (11). Chemical studies on the bark of B. kunstleri afforded compounds 2 and 4 along with one bisbenzylisoquinoline alkaloid, N-dimethylphyllocryptine (12). Structures of compounds 1-12 were elucidated on the basis of spectroscopic methods. All of these isolates were evaluated for their anti-acetylcholinesterase (AChE), anti-α-glucosidase, anti-leishmanial and anti-fungal activities. Compounds 1-12 exhibited strong to moderate bioactivities in aforementioned bioassays.
    Matched MeSH terms: Aporphines/isolation & purification; Aporphines/pharmacology*; Aporphines/chemistry
  9. Lau YS, Ling WC, Murugan D, Mustafa MR
    J Cardiovasc Pharmacol, 2015 Jun;65(6):522-31.
    PMID: 25469805 DOI: 10.1097/FJC.0000000000000185
    Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, are a rich source of antioxidants. Boldine [(S)-2,9-dihydroxy-1,10-dimethoxy-aporphine], an aporphine alkaloid, is a potent antioxidant found in the leaves and bark of the Chilean boldo tree. Boldine has been extensively reported as a potent "natural" antioxidant and possesses several health-promoting properties like anti-inflammatory, antitumor promoting, antidiabetic, and cytoprotective. Boldine exhibited significant endothelial protective effect in animal models of hypertension and diabetes mellitus. In isolated thoracic aorta of spontaneously hypertensive rats, streptozotocin-induced diabetic rats, and db/db mice, repeated treatment of boldine significantly improved the attenuated acetylcholine-induced endothelium-dependent relaxations. The endothelial protective role of boldine correlated with increased nitric oxide levels and reduction of vascular reactive oxygen species via inhibition of the nicotinamide adenine dinucleotide phosphate oxidase subunits, p47 and nicotinamide adenine dinucleotide phosphate oxidase 2, and angiotensin II-induced bone morphogenetic protein-4 oxidative stress cascade with downregulation of angiotensin II type 1 receptor and bone morphogenetic protein-4 expression. Taken together, it seems that boldine may exert protective effects on the endothelium via several mechanisms, including protecting nitric oxide from degradation by reactive oxygen species as in oxidative stress-related diseases. The present review supports a complimentary therapeutic role of the phytochemical, boldine, against endothelial dysfunctions associated with hypertension and diabetes mellitus by interfering with the oxidative stress-mediated signaling pathway.
    Matched MeSH terms: Aporphines/pharmacokinetics; Aporphines/therapeutic use*; Aporphines/toxicity
  10. Omar H, Hashim NM, Zajmi A, Nordin N, Abdelwahab SI, Azizan AH, et al.
    Molecules, 2013 Jul 29;18(8):8994-9009.
    PMID: 23899833 DOI: 10.3390/molecules18088994
    The oxoaporphine alkaloid lysicamine (1), and three proaporphine alkaloids, litsericinone (2), 8,9,11,12-tetrahydromecambrine (3) and hexahydromecambrine A (4) were isolated from the leaves of Phoebe grandis (Nees) Merr. (Lauraceae). Compounds 2 and 3 were first time isolated as new naturally occurring compounds from plants. The NMR data for the compounds 2-4 have never been reported so far. Compounds 1 and 2 showed significant cytotoxic activity against a MCF7 (human estrogen receptor (ER+) positive breast cancer) cell line with IC₅₀ values of 26 and 60 µg/mL, respectively. Furthermore, in vitro cytotoxic activity against HepG2 (human liver cancer) cell line was evaluated for compounds 1-4 with IC₅₀ values of 27, 14, 81 and 20 µg/mL, respectively. Lysicamine (1) displayed strong antibacterial activity against Bacillus subtilis (B145), Staphylococcus aureus (S1434) and Staphylococus epidermidis (a clinically isolated strain) with inhibition zones of 15.50 ± 0.57, 13.33 ± 0.57 and 12.00 ± 0.00 mm, respectively. However, none of the tested pathogenic bacteria were susceptible towards compounds 2 and 3.
    Matched MeSH terms: Aporphines/administration & dosage*; Aporphines/isolation & purification; Aporphines/chemistry
  11. Chung LY, Lo MW, Mustafa MR, Goh SH, Imiyabir Z
    Phytother Res, 2009 Mar;23(3):330-4.
    PMID: 18844258 DOI: 10.1002/ptr.2627
    A 96-well microplate filtration based 5-HT(2A) receptor-radioligand binding assay was optimized and adopted to carry out a bioassay-guided fractionation of the methanol extract of the leaves of Litsea sessilis. This purification led to the isolation of two compounds identified as (+)-boldine (1) and (+)-dehydrovomifoliol (2). (+)-Boldine binds to 5-HT(2A) receptors at high concentrations with a K(i) value of 2.16 microm. However, (+)-dehydrovomifoliol showed minimal competitive inhibition on the binding of [(3)H]ketanserin to the same receptor with a K(i) value of 2.06 mm. These results suggest that (+)-boldine influences the activity of 5-HT(2A) receptors through competitive binding as an agonist or antagonist.
    Matched MeSH terms: Aporphines/pharmacology*
  12. Paydar M, Kamalidehghan B, Wong YL, Wong WF, Looi CY, Mustafa MR
    Drug Des Devel Ther, 2014;8:719-33.
    PMID: 24944509 DOI: 10.2147/DDDT.S58178
    To date, plants have been the major source of anticancer drugs. Boldine is a natural alkaloid commonly found in the leaves and bark of Peumus boldus. In this study, we found that boldine potently inhibited the viability of the human invasive breast cancer cell lines, MDA-MB-231 (48-hour IC₅₀ 46.5±3.1 μg/mL) and MDA-MB-468 (48-hour IC₅₀ 50.8±2.7 μg/mL). Boldine had a cytotoxic effect and induced apoptosis in breast cancer cells as indicated by a higher amount of lactate dehydrogenase released, membrane permeability, and DNA fragmentation. In addition, we demonstrated that boldine induced cell cycle arrest at G2/M phase. The anticancer mechanism is associated with disruption of the mitochondrial membrane potential and release of cytochrome c in MDA-MB-231. Boldine selectively induced activation of caspase-9 and caspase-3/7, but not caspase-8. We also found that boldine could inhibit nuclear factor kappa B activation, a key molecule in tumor progression and metastasis. In addition, protein array and Western blotting analysis showed that treatment with boldine resulted in downregulation of Bcl-2 and heat shock protein 70 and upregulation of Bax in the MDA-MB-231 cell line. An acute toxicity study in rats revealed that boldine at a dose of 100 mg/kg body weight was well tolerated. Moreover, intraperitoneal injection of boldine (50 or 100 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that boldine is a potentially useful agent for the treatment of breast cancer.
    Matched MeSH terms: Aporphines/pharmacology*; Aporphines/chemistry
  13. Lau YS, Machha A, Achike FI, Murugan D, Mustafa MR
    Exp Biol Med (Maywood), 2012 Jan;237(1):93-8.
    PMID: 22156043 DOI: 10.1258/ebm.2011.011145
    Boldine, a major aporphine alkaloid found in Chilean boldo tree, is a potent antioxidant. Oxidative stress plays a detrimental role in the pathogenesis of endothelial dysfunction in hypertension. In the present study, we investigated the effects of boldine on endothelial dysfunction in hypertension using spontaneously hypertensive rats (SHR), the most studied animal model of hypertension. SHR and their age-matched normotensive Wistar-Kyoto (WKY) rats were treated with boldine (20 mg/kg per day) or its vehicle, which served as control, for seven days. Control SHR displayed higher systolic blood pressure (SBP), reduced endothelium-dependent aortic relaxation to acetylcholine (ACh), marginally attenuated endothelium-independent aortic relaxation to sodium nitroprusside (SNP), increased aortic superoxide and peroxynitrite production, and enhanced p47(phox) protein expression as compared with control WKY rats. Boldine treatment significantly lowered SBP in SHR but not in WKY. Boldine treatment enhanced the maximal relaxation to ACh in SHR, but had no effect in WKY, whereas the sensitivity to ACh was increased in both SHR and WKY aortas. Boldine treatment enhanced sensitivity, but was without effect on maximal aortic relaxation responses, to SNP in both WKY and SHR aortas. In addition, boldine treatment lowered aortic superoxide and peroxynitrite production and downregulated p47(phox) protein expression in SHR aortas, but had no effect in the WKY control. These results show that boldine treatment exerts endothelial protective effects in hypertension, achieved, at least in part, through the inhibition of NADPH-mediated superoxide production.
    Matched MeSH terms: Aporphines/administration & dosage; Aporphines/pharmacology*
  14. Mustafa MR, Achike FI
    Acta Pharmacol Sin, 2000 Dec;21(12):1165-8.
    PMID: 11603294
    Dicentrine is a known alpha 1-adrenoceptor antagonist, but its alpha 1-adrenoceptor subtype selectivity has not yet been determined. We therefore, investigated the putative alpha 1-adrenoceptor subtype selectivity of this agent.
    Matched MeSH terms: Aporphines/isolation & purification; Aporphines/pharmacology*
  15. Kim RP, Bihud V, Bin Mohamad K, Leong KH, Bin Mohamad J, Bin Ahmad F, et al.
    Molecules, 2012 Dec 21;18(1):128-39.
    PMID: 23344192 DOI: 10.3390/molecules18010128
    Eleven compounds:goniomicin A (1), goniomicin B (2), goniomicin C (3), goniomicin D (4), tapisoidin (5), goniothalamin (6), 9-deoxygoniopypyrone (7), pterodondiol (8), liriodenine (9), benzamide (10) and cinnamic acid (11), were isolated from the stem bark of Goniothalamus tapisoides. All compounds were identified by spectroscopic analysis and, for known compounds, by comparison with published data. Goniothalamin (6) exhibited mild cytotoxic activity towards a colon cancer cell line (HT-29), with an IC(50)value of 64.17 ± 5.60 µM. Goniomicin B (2) give the highest antioxidant activity in the DPPH assay among all compounds tested, with an IC(50) of 0.207 µM.
    Matched MeSH terms: Aporphines/isolation & purification; Aporphines/pharmacology
  16. Moharam BA, Jantan I, Jalil J, Shaari K
    Molecules, 2010 Nov 03;15(11):7840-8.
    PMID: 21060292 DOI: 10.3390/molecules15117840
    Phylligenine, together with quebrachitol, stigmasterol and two aporphine alkaloids--oxoputerine and liriodenine--were isolated from the twigs of Mitrephora vulpina C.E.C. Fisch. They were evaluated for their ability to inhibit platelet activating factor (PAF) receptor binding to rabbit platelets using 3H-PAF as a ligand and their antiplatelet aggregation effect in human whole blood induced by arachidonic acid (AA), collagen and adenosine diphosphate (ADP). Of all the compounds tested, phylligenin and quebrachitol exhibited potent and concentration-dependent inhibitory effects on PAF receptor binding, with IC(50) values of 13.1 and 42.2 µM, respectively. The IC(50) value of phylligenin was comparable to that of cedrol (10.2 µM), a potent PAF antagonist. Phylligenin also showed strong dose-dependent inhibitory activity on platelet aggregation induced by AA and ADP.
    Matched MeSH terms: Aporphines/isolation & purification; Aporphines/pharmacology
  17. Zahari A, Ablat A, Omer N, Nafiah MA, Sivasothy Y, Mohamad J, et al.
    Sci Rep, 2016;6:21517.
    PMID: 26898753 DOI: 10.1038/srep21517
    The UV-vis spectra of isocorydine 1, norisocorydine 2 and boldine 3 were studied in 2% v/v acetonitrile, at constant ionic strength (0.1 M NaCl, 35 degree Celsius). The pK(a) values of isocorydine 1 and norisocorydine 2 were 11.75 and 12.07, respectively. Boldine 3 gave a pK(a) value of 9.16 and 10.44. All of the alkaloids 1-3 were stable at physiological pH; thereby all of them will not ionize, thus permitting the basic nitrogen to be protonated and accumulated within the acidic food vacuole of Plasmodium via pH trapping. Subsequently, acidic food vacuoles that have been neutralized by alkaloids would result in enhancement of the antiplasmodial activity. The alkaloids showed antiplasmodial activity against Plasmodium falciparum and antioxidant activities; DPPH radical scavenging, metal chelating and ferric reducing power. The antioxidant properties of the alkaloids under investigation revealed that in addition to the antiplasmodial activity, the alkaloids can also prevent oxidative damage. It can be prevented by binding free heme and neutralizing the electrons produced during the Plasmodium falciparum mediated haemoglobin destruction in the host. Slightly basic properties of the aforementioned alkaloids, along with their antioxidant activities, are advantageous in improving the suppression of malaria infection that cause less damage to the host.
    Matched MeSH terms: Aporphines
  18. Lim, C.M., Ee, G.C.L., Rahmani, M., Bong, C.F.J.
    MyJurnal
    An investigation, on the roots of Piper nigrum and the aerial parts of Piper betle, has yielded several alkaloids. The dried root sample of Piper nigrum was extracted using various solvents in increasing polarity. The dried aerial part of Piper betle was extracted using the Soxhlet extraction method. The alkaloids isolated were pellitorine(1), (E)-1-[3’,4’- (Methylenedioxy)cinnamoyl]piperidine(2), piperine(3), piperolactam D(4), cepharadione A(5), and 2,4-tetradecadienoic acid isobutyl amide(6). These compounds were isolated using chromatographic methods, while the elucidation of the structures was carried out using MS, IR and NMR techniques. The xtracts of Piper nigrum and Piper betle were also tested for cytotoxicity activities. This is the first report on E)-1-[3’,4’-(Methylenedioxy)cinnamoyl] piperidine(2) from Piper nigrum as a natural product.
    Matched MeSH terms: Aporphines
  19. Heida Nadia Zulkefli, Jamaludin Mohamad, Nurhayati Zainal Abidin
    Sains Malaysiana, 2013;42:697-706.
    Tinospora crispa and Tabernaemontana corymbosa have been used traditionally to treat fever, diabetes, rheumatism and sinusitis. The objective of this study was to evaluate the antioxidant activity of Tinospora crispa and Tabernaemontana corymbosa. The presence of apigenin and magnoflorine was detected using LCMS/MS in Tinospora crispa (Patawali) whereas appararicine, voafinine, conodusarine, conodurine, voacamine and voacangine were detected in Tabernaemontana corymbosa (Susur kelapa) methanol extract. The stem extract of Tinospora crispa showed high antioxidant activity in the following order: DPPH radical scavenging, reducing power and metal chelating assay (98.8%, 0.957, 81.97%) than Tabernaemontana corymbosa of leaves (90.04%, 0.652, 69.64%), stem (82.78%, 0.819, 36.70%) and root extracts (63.25%, 0.469, 51.56%), respectively. The high antioxidant activity in the stem extract of Tinospora crispa is due to the presence of apigenin and magnoflorine. The high antioxidant activity in Tabernaemontana corymbosa extract is due to its high phenol contents. There were significant linear positive correlation (r=0.788, p<0.001, r2=0.621) between the total phenolic content and DPPH free radical scavenging assay in the crude extracts of Tinospora crispa and Tabernaemontana corymbosa. Meanwhile, a significant moderate positive correlation was observed between the total phenolic content and ferric reducing power assay (r= 0.556, p<0.05, r2= 0.309). However, there was no significant difference in the correlation coefficient of total phenolic content and metal chelating assay.
    Matched MeSH terms: Aporphines
  20. Ee GC, Lim CM, Lim CK, Rahmani M, Shaari K, Bong CF
    Nat Prod Res, 2009;23(15):1416-23.
    PMID: 19809914 DOI: 10.1080/14786410902757998
    Detailed chemical studies on the roots of Piper sarmentosum and Piper nigrum have resulted in several alkaloids. The roots of P. sarmentosum gave a new aromatic compound, 1-nitrosoimino-2,4,5-trimethoxybenzene (1). Piper nigrum roots gave pellitorine (2), (E)-1-[3',4'-(methylenedioxy)cinnamoyl]piperidine (3), 2,4-tetradecadienoic acid isobutyl amide (4), piperine (5), sylvamide (6), cepharadione A (7), piperolactam D (8) and paprazine (9). Structural elucidation of these compounds was achieved through NMR and MS techniques. Cytotoxic activity screening of the plant extracts indicated some activity.
    Matched MeSH terms: Aporphines/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links