Displaying publications 1 - 20 of 154 in total

Abstract:
Sort:
  1. Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT
    Phytother Res, 2023 Mar;37(3):1036-1056.
    PMID: 36343627 DOI: 10.1002/ptr.7671
    The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.
    Matched MeSH terms: Antiviral Agents/pharmacology
  2. Al-Harrasi A, Behl T, Upadhyay T, Chigurupati S, Bhatt S, Sehgal A, et al.
    Environ Sci Pollut Res Int, 2022 Jun;29(28):42404-42432.
    PMID: 35362883 DOI: 10.1007/s11356-022-19770-2
    The human coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus; the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Natural products, secondary metabolites show positive leads with antiviral and immunotherapy treatments using genomic studies in silico docking. In addition, it includes the action of a mechanism targeting the SARS-CoV-2. In this literature, we aimed to evaluate the antiviral movement of the NT-VRL-1 unique terpene definition to Human coronavirus (HCoV-229E). The effects of 19 hydrolysable tannins on the SARS-CoV-2 were therefore theoretically reviewed and analyzed utilising the molecular operating surroundings for their C-Like protease 3CLpro catalytic dyad residues Angiotensin converting enzyme-2 (MOE 09). Pedunculagin, tercatan, and castalin were detected as interacting strongly with SARS-receptor Cov-2's binding site and catalytic dyad (Cys145 and His41). SARS-CoV-2 methods of subunit S1 (ACE2) inhibit the interaction of the receiver with the s-protein once a drug molecule is coupled to the s-protein and prevent it from infecting the target cells in alkaloids. Our review strongly demonstrates the evidence that natural compounds and their derivatives can be used against the human coronavirus and serves as an area of research for future perspective.
    Matched MeSH terms: Antiviral Agents/pharmacology
  3. Hanna GS, Benjamin MM, Choo YM, De R, Schinazi RF, Nielson SE, et al.
    J Nat Prod, 2024 Feb 23;87(2):217-227.
    PMID: 38242544 DOI: 10.1021/acs.jnatprod.3c00875
    The urgent need for new classes of orally available, safe, and effective antivirals─covering a breadth of emerging viruses─is evidenced by the loss of life and economic challenges created by the HIV-1 and SARS-CoV-2 pandemics. As frontline interventions, small-molecule antivirals can be deployed prophylactically or postinfection to control the initial spread of outbreaks by reducing transmissibility and symptom severity. Natural products have an impressive track record of success as prototypic antivirals and continue to provide new drugs through synthesis, medicinal chemistry, and optimization decades after discovery. Here, we demonstrate an approach using computational analysis typically used for rational drug design to identify and develop natural product-inspired antivirals. This was done with the goal of identifying natural product prototypes to aid the effort of progressing toward safe, effective, and affordable broad-spectrum inhibitors of Betacoronavirus replication by targeting the highly conserved RNA 2'-O-methyltransferase (2'-O-MTase). Machaeriols RS-1 (7) and RS-2 (8) were identified using a previously outlined informatics approach to first screen for natural product prototypes, followed by in silico-guided synthesis. Both molecules are based on a rare natural product group. The machaeriols (3-6), isolated from the genus Machaerium, endemic to Amazonia, inhibited the SARS-CoV-2 2'-O-MTase more potently than the positive control, Sinefungin (2), and in silico modeling suggests distinct molecular interactions. This report highlights the potential of computationally driven screening to leverage natural product libraries and improve the efficiency of isolation or synthetic analog development.
    Matched MeSH terms: Antiviral Agents/pharmacology
  4. Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Sinha BN, et al.
    Mini Rev Med Chem, 2021;21(8):1004-1016.
    PMID: 33280595 DOI: 10.2174/1389557520666201204162103
    The novel coronavirus disease-19 (COVID-19) is a global pandemic that emerged from Wuhan, China, and has spread all around the world, affecting 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 updates of August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine exists. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID- 19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in clinical uses or studies on COVID-19 and also focuses on the mode of action of drugs being repositioned against COVID-19.
    Matched MeSH terms: Antiviral Agents/pharmacology
  5. Low Z, Lani R, Tiong V, Poh C, AbuBakar S, Hassandarvish P
    Int J Mol Sci, 2023 May 31;24(11).
    PMID: 37298539 DOI: 10.3390/ijms24119589
    Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.
    Matched MeSH terms: Antiviral Agents/pharmacology
  6. Ghosh S, Al-Sharify ZT, Maleka MF, Onyeaka H, Maleke M, Maolloum A, et al.
    Environ Sci Pollut Res Int, 2022 Aug;29(39):58628-58647.
    PMID: 35794320 DOI: 10.1007/s11356-022-21652-6
    This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed.
    Matched MeSH terms: Antiviral Agents/pharmacology
  7. Bandyopadhyay S, Abiodun OA, Ogboo BC, Kola-Mustapha AT, Attah EI, Edemhanria L, et al.
    J Biomol Struct Dyn, 2022;40(22):11467-11483.
    PMID: 34370622 DOI: 10.1080/07391102.2021.1959401
    Medicinal plants as rich sources of bioactive compounds are now being explored for drug development against COVID-19. 19 medicinal plants known to exhibit antiviral and anti-inflammatory effects were manually curated, procuring a library of 521 metabolites; this was virtually screened against NSP9, including some other viral and host targets and were evaluated for polypharmacological indications. Leads were identified via rigorous scoring thresholds and ADMET filtering. MM-GBSA calculation was deployed to select NSP9-Lead complexes and the complexes were evaluated for their stability and protein-ligand communication via MD simulation. We identified 5 phytochemical leads for NSP9, 23 for Furin, 18 for ORF3a, and 19 for IL-6. Ochnaflavone and Licoflavone B, obtained from Lonicera japonica (Japanese Honeysuckle) and Glycyrrhiza glabra (Licorice), respectively, were identified to have the highest potential polypharmacological properties for the aforementioned targets and may act on multiple pathways simultaneously to inhibit viral entry, replication, and disease progression. Additionally, MD simulation supports the robust stability of Ochnaflavone and Licoflavone B against NSP9 at the active sites via hydrophobic interactions, H-bonding, and H-bonding facilitated by water. This study promotes the initiation of further experimental analysis of natural product-based anti-COVID-19 therapeutics.
    Matched MeSH terms: Antiviral Agents/pharmacology
  8. Ben Hadda T, Berredjem M, Almalki FA, Rastija V, Jamalis J, Emran TB, et al.
    J Biomol Struct Dyn, 2022;40(19):9429-9442.
    PMID: 34033727 DOI: 10.1080/07391102.2021.1930161
    Remdesivir and hydroxychloroquine derivatives form two important classes of heterocyclic compounds. They are known for their anti-malarial biological activity. This research aims to analyze the physicochemical properties of remdesivir and hydroxychloroquine compounds by the computational approach. DFT, docking, and POM analyses also identify antiviral pharmacophore sites of both compounds. The antiviral activity of hydroxychloroquine compound's in the presence of zinc sulfate and azithromycin is evaluated through its capacity to coordinate transition metals (M = Cu, Ni, Zn, Co, Ru, Pt). The obtained bioinformatic results showed the potent antiviral/antibacterial activity of the prepared mixture (Hydroxychloroquine/Azithromycin/Zinc sulfate) for all the opportunistic Gram-positive, Gram-negative in the presence of coronavirus compared with the complexes Polypyridine-Ruthenium-di-aquo. The postulated zinc(II) complex of hydroxychloroquine derivatives are indeed an effective antibacterial and antiviral agent against coronavirus and should be extended to other pathogens. The combination of a pharmacophore site with a redox [Metal(OH2)2] moiety is of crucial role to fight against viruses and bacteria strains. [Formula: see text]Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Antiviral Agents/pharmacology
  9. Tan RSL, Hassandarvish P, Chee CF, Chan LW, Wong TW
    Carbohydr Polym, 2022 Aug 15;290:119500.
    PMID: 35550778 DOI: 10.1016/j.carbpol.2022.119500
    The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
    Matched MeSH terms: Antiviral Agents/pharmacology
  10. Lee MF, Anasir MI, Poh CL
    Virology, 2023 Mar;580:10-27.
    PMID: 36739680 DOI: 10.1016/j.virol.2023.01.016
    Dengue infections pose a critical threat to public health worldwide. Since there are no clinically approved antiviral drugs to treat dengue infections caused by the four dengue virus (DENV) serotypes, there is an urgent need to develop effective antivirals. Peptides are promising antiviral candidates due to their specificity and non-toxic properties. The DENV envelope (E) protein was selected for the design of antiviral peptides due to its importance in receptor binding and viral fusion to the host cell membrane. Twelve novel peptides were designed to mimic regions containing critical amino acid residues of the DENV E protein required for interaction with the host. A total of four peptides were identified to exhibit potent inhibitory effects against at least three or all four DENV serotypes. Peptide 3 demonstrated all three modes of action: cell protection and inhibition of post-infection against all four DENV serotypes, whereas direct virus-inactivating effects were only observed against DENV-2, 3, and 4. Peptide 4 showed good direct virus-inactivating effects against DENV-2 (74.26%) as well as good inhibitions of DENV-1 (80.37%) and DENV-4 (72.22%) during the post-infection stage. Peptide 5 exhibited direct virus-inactivating effects against all four DENV serotypes, albeit at lower inhibition levels against DENV-1 and DENV-3. It also exhibited highly significant inhibition of DENV-4 (89.31%) during post-infection. Truncated peptide 5F which was derived from peptide 5 showed more significant inhibition of DENV-4 (91.58%) during post-infection and good direct virus-inactivating effects against DENV-2 (77.55%) at a lower concentration of 100 μM. Peptide 3 could be considered as the best antiviral candidate for pre- and post-infection treatments of DENV infections in regions with four circulating dengue serotypes. However, if the most predominant dengue serotype for a particular region could be identified, peptides with significantly high antiviral activities against that particular dengue serotype could serve as more suitable antiviral candidates. Thus, peptide 5F serves as a more suitable antiviral candidate for post-infection treatment against DENV-4.
    Matched MeSH terms: Antiviral Agents/pharmacology
  11. Norshidah H, Leow CH, Ezleen KE, Wahab HA, Vignesh R, Rasul A, et al.
    Front Cell Infect Microbiol, 2023;13:1061937.
    PMID: 36864886 DOI: 10.3389/fcimb.2023.1061937
    An increase in the occurrence of viral infectious diseases is a global concern for human health. According to a WHO report, dengue virus (DENV) is one of the most common viral diseases affecting approximately 400 million people annually, with worsening symptoms in nearly 1% of cases. Both academic and industrial researchers have conducted numerous studies on viral epidemiology, virus structure and function, source and route of infection, treatment targets, vaccines, and drugs. The development of CYD-TDV or Dengvaxia® vaccine has been a major milestone in dengue treatment. However, evidence has shown that vaccines have some drawbacks and limitations. Therefore, researchers are developing dengue antivirals to curb infections. DENV NS2B/NS3 protease is a DENV enzyme essential for replication and virus assembly, making it an interesting antiviral target. For faster hit and lead recognition of DENV targets, methods to screen large number of molecules at lower costs are essential. Similarly, an integrated and multidisciplinary approach involving in silico screening and confirmation of biological activity is required. In this review, we discuss recent strategies for searching for novel DENV NS2B/NS3 protease inhibitors from the in silico and in vitro perspectives, either by applying one of the approaches or by integrating both. Therefore, we hope that our review will encourage researchers to integrate the best strategies and encourage further developments in this area.
    Matched MeSH terms: Antiviral Agents/pharmacology
  12. Hui LY, Mun CS, Sing LC, Rajak H, Karunakaran R, Ravichandran V
    Med Chem, 2023;19(3):297-309.
    PMID: 35713125 DOI: 10.2174/1573406418666220616110351
    BACKGROUND: The severe acute respiratory syndrome coronavirus-2 is causing a disaster through coronavirus disease-19 (COVID-19), affecting the world population with a high mortality rate. Although numerous scientific efforts have been made, we do not have any specific drug for COVID-19 treatment.

    OBJECTIVE: Aim of the present study was to analyse the molecular interaction of nitrogen heterocyclic based drugs (hydroxychloroquine, remdesivir and lomefloxacin) with various SARSCoV- 2 proteins (RdRp, PLPro, Mpro and spike proteins) using a molecular docking approach.

    METHODS: We have performed docking study using PyRx software, and Discovery Studio Visualizer was used to visualise the molecular interactions. The designed nitrogen heterocyclic analogues were checked for Lipinski's rule of five, Veber's Law and Adsorption, Distribution, Metabolism, and Excretion (ADME) threshold. After obtaining the docking results of existing nitrogen heterocyclic drugs, we modified the selected drugs to get molecules with better affinity against SARS-CoV-2.

    RESULTS: Hydroxychloroquine bound to RdRp, spike protein, PLPro and Mpro at -5.2, -5.1, -6.7 and -6.0 kcal/mol, while remdesivir bound to RdRp, spike protein, PLPro, and Mpro at -6.1, -6.9, -6.4 and -6.9 kcal/mol, respectively. Lomefloxacin bound to RdRp, spike protein, PLPro and Pro at -6.4, -6.6, -7.2 and -6.9 kcal/mol. ADME studies of all these compounds indicated lipophilicity and high gastro intestine absorbability. The modified drug structures possess better binding efficacy towards at least one target than their parent compounds.

    CONCLUSION: The outcome reveals that the designed nitrogen heterocyclics could contribute to developing the potent inhibitory drug SARS-CoV-2 with strong multi-targeted inhibition ability and reactivity.

    Matched MeSH terms: Antiviral Agents/pharmacology
  13. Sea YL, Gee YJ, Lal SK, Choo WS
    J Appl Microbiol, 2023 Jan 23;134(1).
    PMID: 36626776 DOI: 10.1093/jambio/lxac036
    Cannabis is a plant notorious for its psychoactive effect, but when used correctly, it provides a plethora of medicinal benefits. With more than 400 active compounds that have therapeutic properties, cannabis has been accepted widely as a medical treatment and for recreational purposes in several countries. The compounds exhibit various clinical benefits, which include, but are not limited to, anticancer, antimicrobial, and antioxidant properties. Among the vast range of compounds, multiple research papers have shown that cannabinoids, such as cannabidiol and delta-9-tetrahydrocannabinol, have antiviral effects. Recently, scientists found that both compounds can reduce severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral infection by downregulating ACE2 transcript levels and by exerting anti-inflammatory properties. These compounds also act as the SARS-CoV-2 main protease inhibitors that block viral replication. Apart from cannabinoids, terpenes in cannabis plants have also been widely explored for their antiviral properties. With particular emphasis on four different viruses, SARS-CoV-2, human immunodeficiency virus, hepatitis C virus, and herpes simplex virus-1, this review discussed the role of cannabis compounds in combating viral infections and the potential of both cannabinoids and terpenes as novel antiviral therapeutics.
    Matched MeSH terms: Antiviral Agents/pharmacology
  14. Ayipo YO, Ahmad I, Najib YS, Sheu SK, Patel H, Mordi MN
    J Biomol Struct Dyn, 2023 Mar;41(5):1959-1977.
    PMID: 35037841 DOI: 10.1080/07391102.2022.2026818
    The nsp3 macrodomain and nsp12 (RdRp) enzymes are strongly implicated in the virulent regulation of the host immune response and viral replication of SARS-CoV-2, making them plausible therapeutic targets for mitigating infectivity. Remdesivir remains the only FDA-approved small-molecule inhibitor of the nsp12 in clinical conditions while none has been approved yet for the nsp3 macrodomain. In this study, 69,067 natural compounds from the IBScreen database were screened for efficacious potentials with mechanistic multitarget-directed inhibitory pharmacology against the dual targets using in silico approaches. Standard and extra precision (SP and XP) Maestro glide docking analyses were employed to evaluate their inhibitory interactions against the enzymes. Four compounds, STOCK1N-45901, 03804, 83408, 08377 consistently showed high XP scores against the respective targets and interacted strongly with pharmacologically essential amino acid and RNA residues, in better terms than the standard, co-crystallized inhibitors, GS-441524 and remdesivir. Further assessments through the predictions of ADMET and mutagenicity distinguished STOCK1N-45901, a natural derivative of o-hydroxybenzoate as the most promising candidate. The ligand maintained a good conformational and thermodynamic stability in complex with the enzymes throughout the trajectories of 100 ns molecular dynamics, indicated by RMSD, RMSF and radius of gyration plots. Its binding free energy, MM-GBSA was recorded as -54.24 and -31.77 kcal/mol against the respective enzyme, while its structure-activity relationships confer high probabilities as active antiviral, anti-inflammatory, antiinfection, antitussive and peroxidase inhibitor. The IBScreen database natural product, STOCK1N-45901 (2,3,4,5,6-pentahydroxyhexyl o-hydroxybenzoate) is thus recommended as a potent inhibitor of dual nsp3 and nsp12 of SARS-CoV-2 for further study. Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Antiviral Agents/pharmacology
  15. Lee MF, Wu YS, Poh CL
    Viruses, 2023 Mar 08;15(3).
    PMID: 36992414 DOI: 10.3390/v15030705
    Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.
    Matched MeSH terms: Antiviral Agents/pharmacology
  16. Mire CE, Satterfield BA, Geisbert TW
    Methods Mol Biol, 2023;2682:159-173.
    PMID: 37610581 DOI: 10.1007/978-1-0716-3283-3_12
    Hendra and Nipah viruses are henipaviruses that have caused lethal human disease in Australia and Malaysia, Bangladesh, India, and the Philippines, respectively. These viruses are considered Category C pathogens by the US Centers for Disease Control. Nipah virus was recently placed on the World Health Organization Research and Development Blueprint Roadmaps for vaccine and therapeutic development. Given the infrequent and unpredictable nature of henipavirus outbreaks licensure of vaccines and therapeutics will likely require an animal model to demonstrate protective efficacy against henipavirus disease. Studies have shown that nonhuman primates are the most accurate model of human henipavirus disease and would be an important component of any application for licensure of a vaccine or antiviral drug under the US FDA Animal Rule. Nonhuman primate model selection and dosing are discussed regarding vaccine and therapeutic studies against henipaviruses.
    Matched MeSH terms: Antiviral Agents/pharmacology
  17. Lo MK
    Methods Mol Biol, 2023;2682:87-92.
    PMID: 37610575 DOI: 10.1007/978-1-0716-3283-3_6
    Spillovers of Nipah virus (NiV) from its pteropid bat reservoir into the human population continue to cause near-annual outbreaks of fatal encephalitis and respiratory disease in Bangladesh and India since its emergence in Malaysia over 20 years ago. The current lack of effective antiviral therapeutics against NiV merits further testing of compound libraries against NiV using rapid quantitative antiviral assays. The development of recombinant henipaviruses expressing reporter fluorescence and/or luminescence proteins has facilitated the screening of such libraries. In this chapter, we provide a basic protocol for both types of reporter viruses. Utilizing these live NiV-based reporter assays requires modest instrumentation and sidesteps the labor-intensive steps associated with traditional cytopathic effect or viral antigen-based assays.
    Matched MeSH terms: Antiviral Agents/pharmacology
  18. Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, et al.
    Mol Pharm, 2023 Aug 07;20(8):3698-3740.
    PMID: 37486263 DOI: 10.1021/acs.molpharmaceut.2c01080
    Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
    Matched MeSH terms: Antiviral Agents/pharmacology
  19. Hassan MZ, Osman H, Ali MA, Ahsan MJ
    Eur J Med Chem, 2016 Nov 10;123:236-255.
    PMID: 27484512 DOI: 10.1016/j.ejmech.2016.07.056
    Coumarins have received a considerable attention in the last three decades as a lead structures for the discovery of orally bioavailable non-peptidic antiviral agents. A lot of structurally diverse coumarins analogues were found to display remarkable array of affinity with the different molecular targets for antiviral agents and slight modifications around the central motif result in pronounced changes in its antiviral spectrum. This manuscript thoroughly reviews the design, discovery and structure-activity relationship studies of the coumarin analogues as antiviral agents focusing mainly on lead optimization and its development into clinical candidates.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  20. Wong XK, Ng CS, Yeong KY
    Bioorg Chem, 2024 Mar;144:107150.
    PMID: 38309002 DOI: 10.1016/j.bioorg.2024.107150
    Nucleobases serve as essential molecular frameworks present in both natural and synthetic compounds that exhibit notable antiviral activity. Through molecular modifications, novel nucleobase-containing drugs (NCDs) have been developed, exhibiting enhanced antiviral activity against a wide range of viruses, including the recently emerged SARS‑CoV‑2. This article provides a detailed examination of the significant advancements in NCDs from 2015 till current, encompassing various aspects concerning their mechanisms of action, pharmacology and antiviral properties. Additionally, the article discusses antiviral prodrugs relevant to the scope of this review. It fills in the knowledge gap by examining the structure-activity relationship and trend of NCDs as therapeutics against a diverse range of viral diseases, either as approved drugs, clinical candidates or as early-stage development prospects. Moreover, the article highlights on the status of this field of study and addresses the prevailing limitations encountered.
    Matched MeSH terms: Antiviral Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links