Displaying all 2 publications

Abstract:
Sort:
  1. Amekyeh H, Billa N, Yuen KH, Chin SL
    AAPS PharmSciTech, 2015 Aug;16(4):871-7.
    PMID: 25588365 DOI: 10.1208/s12249-014-0279-4
    The gastrointestinal (GI) transit behavior of and absorption from an amphotericin B (AmB) solid lipid nanoformulation (SLN) in rats was investigated. We aimed to estimate the gastric emptying time (GET) and cecal arrival time (CAT) of AmB SLN in rats as animal models. From these two parameters, an insight on the absorption window of AmB was ascertained. Three types of SLNs, AmB, paracetamol (PAR), and sulfasalazine (SSZ), were similarly formulated using beeswax/theobroma oil composite as the lipid matrix and characterized with regard to size, viscosity, density, migration propensity within agarose gel, in vitro drug release, morphology, gastrointestinal transit, and in vivo absorption. The GET and CAT were estimated indirectly using marker drugs: PAR and sulfapyridine (SP). All three types of SLNs exhibited identical properties with regard to z-average, viscosity, relative density, and propensity to migrate. PAR was absorbed rapidly from the small intestine following emptying of the SLNs giving the T50E (time for 50% absorption of PAR) to be 1.6 h. SP was absorbed after release and microbial degradation of SSZ from SLN in the colon with a lag time of 2 h post-administration, serving as the estimated cecal arrival time of the SLNs. AmB within SLN was favorably absorbed from the small intestine, albeit slowly.
    Matched MeSH terms: Amphotericin B/pharmacokinetics*
  2. Tan JSL, Roberts C, Billa N
    J Biomater Sci Polym Ed, 2020 02;31(2):141-154.
    PMID: 31612804 DOI: 10.1080/09205063.2019.1680926
    Oral delivery of amphotericin B (AmpB) is desirable because it provides a more patient-friendly mode of administration compared to the current delivery approach akin with the marketed AmpB formulations. The goal of the study was to investigate the pharmacokinetics and tissue distribution of orally administered chitosan-coated AmpB-loaded nanostructured lipid carriers (ChiAmpB NLC) administered to Sprague Dawley rats at a dose of 15 mg/kg. Orally administered ChiAmpB NLC resulted in a two-fold increase in the area under the curve (AUC0-∞) compared to the uncoated AmpB NLC and marketed Amphotret®. This enhanced bioavailability of AmpB suggests prolonged transit and retention of ChiAmpB NLC within the small intestine through mucoadhesion and subsequent absorption by the lymphatic pathway. The results show that mean absorption and residence times (MAT & MRT) were significantly higher from ChiAmpB NLC compared to the other two formulations, attesting to the mucoadhesive effect. The ChiAmpB NLC presented a lower nephrotic accumulation with preferential deposition in liver and spleen. Thus, the limitations of current marketed IV formulations of AmpB are potentially addressed with the ChiAmpB NLC in addition to utilizing this approach for targeting internal organs in visceral leishmaniasis.
    Matched MeSH terms: Amphotericin B/pharmacokinetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links