Atomic force microscopy (AFM) lithography was applied to produce nanoscale pattern for silicon nanowire transistor fabrication. This technique takes advantage of imaging facility of AFM and the ability of probe movement controlling over the sample surface to create nanopatterns. A conductive AFM tip was used to grow the silicon oxide nanopatterns on silicon on insulator (SOI) wafer. The applied tip-sample voltage and writing speed were well controlled in order to form pre-designed silicon oxide nanowire transistor structures. The effect of tetra methyl ammonium hydroxide (TMAH) etching duration on the oxide covered silicon nanowire transistor structure has been investigated. A completed silicon nanowire transistor was obtained by removing the oxide layer via hydrofluoric acid etching process. The fabricated silicon nanowire transistor consists of a silicon nanowire that acts as a channel with source and drain pads. A lateral gate pad with a nanowire head was fabricated very close to the channel in the formation of transistor structures.
In this work, poly(MBAAm-co-SBMA) zwitterionic polymer nanoparticles were synthesized in one-step via distillation-precipitation polymerization (DPP) and were characterized. [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) as monomer and N, N'-methylene bis(acrylamide) (MBAAm) as cross-linker are used for the synthesis of nanoparticles. As far as our knowledge, this is the first such report on the synthesis of poly(MBAAm-co-SBMA) nanoparticles via DPP. The newly synthesized nanoparticles were further employed for the surface modification of polysulfone (PSF) hollow fiber membranes for dye removal. The modified hollow fiber membrane exhibited the improved permeability (56 L/ m2 h bar) and dye removal (>98% of Reactive Black 5 and >80.7% of Reactive orange 16) with the high permeation of salts. Therefore, the as-prepared membrane can have potential application in textile and industrial wastewater treatment.
Chemical etching, which is the most sensitive method to recover obliterated serial numbers on metal surfaces, has been practised quite successfully in forensic science laboratories all over the world. A large number of etchants suitable for particular metal surfaces based on empirical studies is available in the literature. This article reviews the sensitivity and efficacy of some popular etchants for recovering obliterated marks on medium carbon steel (0.31% C with ferrite-pearlite microstructure) used in automobile parts. The experiments involved engraving these carbon steel plates with some alphanumeric characters using a computer controlled machine "Gravograph" and erasing them to several depths below the bottom of their engraving depth. Seven metallographic reagents of which most of them were copper containing compounds were chosen for etching. The erased plates were etched with every one of these etchants using swabbing method. The results have revealed that Fry's reagent comprising cupric chloride 90 g, hydrochloric acid 120 mL and water 100mL provided the necessary contrast and was concluded to be the most sensitive. The same reagent was recommended by earlier workers for revealing strain lines in steel surfaces. Earlier, another reagent containing 5 g copper sulphate, 60 mL water, 30 mL (conc.) ammonium hydroxide, and 60 mL (conc.) hydrochloric acid was proved to be more sensitive to restore erased marks on low carbon steel (0.1% C with ferrite-pearlite structure) [M.A.M. Zaili, R. Kuppuswamy, H. Harun, Restoration of engraved marks on steel surfaces by etching technique, Forensic Sci. Int. 171 (2007) 27-32]. Thus the sensitivity of the etching reagent on steel surfaces appeared to be dependent on the content of carbon in the steel.
It is known that restoration of erased engraved identification marks on the engine and the chassis of a car or on a firearm has low success rate. Unlike stamping, engraving on a metal surface leaves no pronounced, permanent subsurface deformation in the crystalline structure, also called dislocation that can be revealed by suitable methods. Hence, the current research work investigated whether metallographic reagents used in the restoration of stamp (compression) marks could be applied to recover engraved marks on steel surfaces and also to establish the sensitivity and effectiveness of some of these reagents for the restoration of the marks. Experiments were conducted by mechanically engraving alphanumeric characters on several steel plates using a computer controlled engraving machine called Gravograph. The markings were later erased from the above steel plates by removing the metal in stages of 0.01 mm through 0.04 mm below the bottom of the engraving. Several plates were thus prepared wherein each one had been abraded to a specific depth. Then eight metallographic reagents were tested on each one of the above erased plates using a swabbing technique. The results had shown that while most of the reagents were able to restore marks up to certain levels of erasure, the reagent 5 g copper sulphate, 60 ml water, 30 ml concentrated ammonium hydroxide and 60 ml concentrated hydrochloric acid restored marks erased to a depth of 0.04 mm below the engraving depth, thus presenting itself the most sensitive reagent. Quite significantly, the above reagent was also able to decipher successfully the original engraved marks that had been erased and engraved with a new number, or obliterated by centre punching. The results of this research work should benefit the forensic practitioners engaged in the serial number recovery on vehicles, firearms and other objects.
In this paper, novel zwitterionic graphene oxide (GO) nanohybrid was synthesized using monomers [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and N,N'-methylenebis(acrylamide) (MBAAm) (GO@poly(SBMA-co-MBAAm), and incorporated into polysulfone (PSF) hollow fiber membrane for the effectual rejection of dye from the wastewater. The synthesized nanohybrid was characterized using FT-IR, PXRD, TGA, EDX, TEM and zeta potential analysis. The occurrence of nanohybrid on the membrane matrix and the elemental composition were analyzed by XPS. The as-prepared tight ultrafiltration hollow fiber membrane exhibited high rejection of reactive black 5 (RB-5, 99%) and reactive orange 16 (RO-16, 74%) at a dye concentration of 10 ppm and pure water flux (PWF) of 49.6 L/m2h. Fabricated nanocomposite membranes were also studied for their efficacy in the removal of both monovalent (NaCl) and divalent salts (Na2SO4). The results revealed that the membrane possesses complete permeation to NaCl with less rejection of Na2SO4 (<5%). In addition, the nanocomposite membrane revealed outstanding antifouling performance with the flux recovery ratio (FRR) of 73% towards bovine serum albumin (BSA). Therefore, the in-house prepared novel nanocomposite membrane is a good candidate for the effective decolorization of wastewater containing dye.
Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle.