METHODS: A cross sectional study was conducted on three groups: individuals with alcohol use disorders (n=30), social drinkers (n=54) and alcohol-naive controls (n=60). 1H NMR-based metabolomics was used to obtain the metabolic profiles of plasma samples. Data were processed by multivariate principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) followed by univariate and multivariate logistic regressions to produce the best fit-model for discrimination between groups.
RESULTS: The OPLS-DA model was able to distinguish between the AUD group and the other groups with high sensitivity, specificity and accuracy of 64.29%, 98.17% and 91.24% respectively. The logistic regression model identified two biomarkers in plasma (propionic acid and acetic acid) as being significantly associated with alcohol use disorders. The reproducibility of all biomarkers was excellent (0.81-1.0).
CONCLUSIONS: The applied plasma metabolomics technique was able to differentiate the metabolites between AUD and the other groups. These metabolites are potential novel biomarkers for diagnosis of alcohol use disorders.