Displaying all 5 publications

Abstract:
Sort:
  1. Cheok YY, Puah SM, Chua KH, Tan JAMA
    Acta Vet Hung, 2020 10 13;68(2):130-139.
    PMID: 33055305 DOI: 10.1556/004.2020.00029
    Aeromonads are recognised as important pathogens of fishes. In this study, ten water samples were randomly collected from pet shops' fish tanks and home aquaria inhabited by several fish species (silver arowana, koi, goldfish, catfish, pictus fish, silver shark and silver dollar fish). Altogether 298 colonies were isolated using Aeromonas selective agar. A total of 154 isolates were then confirmed as belonging to the genus Aeromonas using the GCAT gene. Using ERIC-PCR, a total of 40 duplicate isolates were excluded from the study and 114 isolates were subjected to PCR-RFLP targeting the RNA polymerase sigma factor (rpoD) gene using lab-on-chip. A total of 13 different Aeromonas species were identified. The most prevalent species were A. veronii (27%, 31/114), followed by A. dhakensis (17%, 19/114), A. finlandiensis (9%, 10/114), A. caviae (8%, 9/114), A. hydrophila (4%, 4/114), A. jandaei (4%, 4/114), A. rivuli (3%, 3/114), A. enteropelogens (2%, 2/114), A. tecta (2%, 2/114), A. allosaccharophila (1%, 1/114), A. eucrenophila (1%, 1/114), A. media (1%, 1/114) and A. diversa (1%, 1/114). Twenty-six isolates (23%) were unidentifiable at species level. The present study demonstrates that Aeromonas species are highly diverse in freshwater fish tanks, and suggests the potential risks posed by the isolated bacteria to the health of ornamental fish species.
    Matched MeSH terms: Aeromonas/classification
  2. Chan XY, Chua KH, Puthucheary SD, Yin WF, Chan KG
    J Bacteriol, 2012 Nov;194(22):6350.
    PMID: 23105081 DOI: 10.1128/JB.01642-12
    Aeromonas is a pathogenic organism that is often found to infect humans. Here we report the draft genome of a clinical isolate in Malaysia, Aeromonas sp. strain 159, which shows N-acylhomoserine lactone production. In the draft genome of strain 159, luxI and luxR homologue genes were found to be located at contig 47, and these genes are believed to be important for the quorum-sensing system present in this pathogen.
    Matched MeSH terms: Aeromonas/classification*
  3. Lau TTV, Tan JMA, Puthucheary SD, Puah SM, Chua KH
    Braz J Microbiol, 2020 Sep;51(3):909-918.
    PMID: 32067209 DOI: 10.1007/s42770-020-00239-8
    Aeromonas dhakensis is an emergent human pathogen with medical importance. This study was aimed to determine the sequence types (STs), genetic diversity, and phylogenetic relationships of different clinical sources of 47 A. dhakensis from Malaysia using multilocus sequence typing (MLST), goeBURST, and phylogenetic analyses. The analysis of a concatenated six-gene tree with a nucleotide length of 2994 bp based on six housekeeping genes (gyrB, groL, gltA, metG, ppsA, and recA) and independent analyses of single gene fragments was performed. MLST was able to group 47 A. dhakensis from our collection into 36 STs in which 34 STs are novel STs. The most abundant ST521 consisted of five strains from peritoneal fluid and two strains from stools. Comparison of 62 global A. dhakensis was carried out via goeBURST; 94.4% (34/36) of the identified STs are novel and unique in Malaysia. Two STs (111 and 541) were grouped into clonal complexes among our strains and 32 STs occurred as singletons. Single-gene phylogenetic trees showed varying topologies; groL and rpoD grouped all A. dhakensis into a tight-cluster with bootstrap values of 100% and 99%, respectively. A poor phylogenetic resolution encountered in single-gene analyses was buffered by the multilocus phylogenetic tree that offered high discriminatory power (bootstrap value = 100%) in resolving all A. dhakensis from A. hydrophila and delineating the relationship among other taxa. Genetic diversity analysis showed groL as the most conserved gene and ppsA as the most variable gene. This study revealed novel STs and high genetic diversity among clinical A. dhakensis from Malaysia.
    Matched MeSH terms: Aeromonas/classification
  4. Puah SM, Khor WC, Kee BP, Tan JAMA, Puthucheary SD, Chua KH
    J Med Microbiol, 2018 Sep;67(9):1271-1278.
    PMID: 30024365 DOI: 10.1099/jmm.0.000796
    PURPOSE: The taxonomy of Aeromonas keeps expanding and their identification remains problematic due to their phenotypic and genotypic heterogeneity. In this study, we aimed to develop a rapid and reliable polymerase chain reaction-restriction fragment length polymorphism assay targeting the rpoD gene to enable the differentiation of aeromonads into 27 distinct species using microfluidic capillary electrophoresis.

    METHODOLOGY: A pair of degenerate primers (Aero F: 5'-YGARATCGAYATCGCCAARCGB-3' and Aero R: 5'-GRCCDATGCTCATRCGRCGGTT-3') was designed that amplified the rpoD gene of 27 Aeromonas species. Subsequently, in silico analysis enabled the differentiation of 25 species using the single restriction endonuclease AluI, while 2 species, A. sanarelli and A. taiwanensis, required an additional restriction endonuclease, HpyCH4IV. Twelve type strains (A. hydrophila ATCC7966T, A. caviae ATCC15468T, A. veronii ATCC9071T, A. media DSM4881T, A. allosaccharophila DSM11576T, A. dhakensis DSM17689T, A. enteropelogens DSM7312T, A. jandaei DSM7311T, A. rivuli DSM22539T, A. salmonicida ATCC33658T, A. taiwanensis DSM24096T and A. sanarelli DSM24094T) were randomly selected from the 27 Aeromonas species for experimental validation.Results/key findings. The twelve type strains demonstrated distinctive RFLP patterns and supported the in silico digestion. Subsequently, 60 clinical and environmental strains from our collection, comprising nine Aeromonas species, were used for screening examinations, and the results were in agreement.

    CONCLUSION: This method provides an alternative method for laboratory identification, surveillance and epidemiological investigations of clinical and environmental specimens.

    Matched MeSH terms: Aeromonas/classification
  5. Odeyemi OA, Ahmad A
    Microb Pathog, 2017 Feb;103:178-185.
    PMID: 28062284 DOI: 10.1016/j.micpath.2017.01.007
    This study aimed to compare population dynamics, antibiotic resistance and biofilm formation of Aeromonas and Vibrio species from seawater and sediment collected from Northern Malaysia. Isolates with different colony morphology were characterized using both biochemical and molecular methods before testing for antibiotic resistance and biofilm formation. Results obtained from this study showed that in Kedah, the population of Aeromonas isolated from sediment was highest in Pantai Merdeka (8.22 log CFU/ml), Pulau Bunting recorded the highest population of Aeromonas from sediment (8.43 log CFU/g). It was observed that Vibrio species isolated from seawater and sediment were highest in Kuala Sanglang (9.21 log CFU/ml). In Kuala Perlis, the population of Aeromonas isolated from seawater was highest in Jeti (7.94 log CFU/ml). Highest population of Aeromonas from sediment was recorded in Kampong Tanah Baru (7.99 log CFU/g). It was observed that Vibrio species isolated from seawater was highest in Padang Benta (8.42 log CFU/g) while Jeti Kuala Perlis had highest population of Vibrio isolated from sediment. It was observed that location does not influence population of Aeromonas. The results of the independent t - test revealed that there was no significant relationship between location and population of Vibrio (df = 10, t = 1.144, p > 0.05). The occurrence of biofilm formation and prevalence of antibiotic resistant Aeromonas and Vibrio species in seawater and sediment pose danger to human and aquatic animals' health.
    Matched MeSH terms: Aeromonas/classification*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links