The current conventional injectable vaccines face several drawbacks such as inconvenience and ineffectiveness in mucosal immunization. Therefore, the current development of effective oral vaccines is vital to enable the generation of dual systemic and mucosal immunity. In the present study, we examine the potential of pH-responsive bacterial nanocellulose/polyacrylic acid (BNC/PAA) hydrogel microparticles (MPs) as an oral vaccine carrier. In-vitro entrapment efficiency and release study of Ovalbumin (Ova) demonstrated that as high as 72% of Ova were entrapped in the hydrogel, and the release of loaded Ova was pH-dependent. The released Ova remained structurally conserved as evident by Western blot and circular dichroism. Hydrogel MPs reduced the TEER measurement of HT29MTX/Caco2/Raji B triple co-culture monolayer by reversibly opening the tight junctions (TJs) as shown in the TEM images. The ligated ileal loop assay revealed that hydrogel MPs could facilitate the penetration of FITC-Ova into the Peyer's patches in small intestine. Ova and cholera toxin B (CTB) were utilized in in-vivo oral immunization as model antigen and mucosal adjuvant. The in-vivo immunization revealed mice orally administered with Ova and CTB-loaded hydrogel MPs generated significantly higher level of serum anti-Ova IgG and mucosal anti-Ova IgA in the intestinal washes, compared to intramuscular administrated Ova. These results conclude that BNC/PAA hydrogel MPs is a potential oral vaccine carrier for effective oral immunization.
Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC), carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets' floating lag time was determined to be 30-200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.
The systemic use of non-steroidal anti-inflammatory drugs (NSAIDs) which act by inhibiting cyclooxygenase (COX) is severely hampered by gastric and peptic ulcers. The topical delivery of NSAIDs has the advantages of avoiding gastric and peptic ulcers and delivering the drug to the inflammation site. Importance of aceclofenac as a new generational NSAID has inspired the development of topical dosage forms. This mode of administration may help to avoid typical side effects of NSAIDs associated with oral and systemic administration such as gastric irritation, particularly diarrhoea, nausea, abdominal pain and flatulence. The aim of this study was to formulate topical gel containing 1% of aceclofenac in carbopol and PEG base and to evaluate it for analgesic and antiinflammatory activity using carrageenan-induced thermal hyperalgesia and paw oedema in rats. Carrageenan administration into the hind paw produced a significant inflammation associated with hyperalgesia as shown by decreased rat paw withdrawal latency in response to a thermal stimulus (47+/-0.5 degrees C) 4 h after carrageenan injection. Topical application of AF1 significantly attenuated the development of hypersensitivity to thermal stimulus as compared to control (P<0.05) and other formulation treated groups (P<0.05). All the AF semisolid formulations, when applied topically 2 h before carrageenan administration, inhibited paw edema in a timedependent manner with maximum percent edema inhibition of 80.33+/-2.52 achieved with AF1 after 5 h of carrageenan administration However, topical application of AF2 markedly prevented the development of edema as compared to other formulation (AF2 and AF3) treated groups (P<0.05). Among all the semisolid formulations, Carbopol gel base was found to be most suitable dermatological base for aceclofenac.