Displaying all 3 publications

Abstract:
Sort:
  1. Xu Y, Zhang H, Lit LC, Grothey A, Athanasiadou M, Kiritsi M, et al.
    Sci Signal, 2014 Jun 17;7(330):ra58.
    PMID: 24939894 DOI: 10.1126/scisignal.2005170
    Lemur tyrosine kinase 3 (LMTK3) is associated with cell proliferation and endocrine resistance in breast cancer. We found that, in cultured breast cancer cell lines, LMTK3 promotes the development of a metastatic phenotype by inducing the expression of genes encoding integrin subunits. Invasive behavior in various breast cancer cell lines positively correlated with the abundance of LMTK3. Overexpression of LMTK3 in a breast cancer cell line with low endogenous LMTK3 abundance promoted actin cytoskeleton remodeling, focal adhesion formation, and adhesion to collagen and fibronectin in culture. Using SILAC (stable isotope labeling by amino acids in cell culture) proteomic analysis, we found that LMTK3 increased the abundance of integrin subunits α5 and β1, encoded by ITGA5 and ITGB1. This effect depended on the CDC42 Rho family guanosine triphosphatase, which was in turn activated by the interaction between LMTK3 and growth factor receptor-bound protein 2 (GRB2), an adaptor protein that mediates receptor tyrosine kinase-induced activation of RAS and downstream signaling. Knockdown of GRB2 suppressed LMTK3-induced CDC42 activation, blocked ITGA5 and ITGB1 expression promoted by the transcription factor serum response factor (SRF), and reduced invasive activity. Furthermore, abundance of LMTK3 positively correlated with that of the integrin β1 subunit in breast cancer patient's tumors. Our findings suggest a role for LMTK3 in promoting integrin activity during breast cancer progression and metastasis.
  2. Nishimura A, Sunggip C, Tozaki-Saitoh H, Shimauchi T, Numaga-Tomita T, Hirano K, et al.
    Sci Signal, 2016 Jan 19;9(411):ra7.
    PMID: 26787451 DOI: 10.1126/scisignal.aac9187
    The angiotensin (Ang) type 1 receptor (AT1R) promotes functional and structural integrity of the arterial wall to contribute to vascular homeostasis, but this receptor also promotes hypertension. In our investigation of how Ang II signals are converted by the AT1R from physiological to pathological outputs, we found that the purinergic P2Y6 receptor (P2Y6R), an inflammation-inducible G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR), promoted Ang II-induced hypertension in mice. In mice, deletion of P2Y6R attenuated Ang II-induced increase in blood pressure, vascular remodeling, oxidative stress, and endothelial dysfunction. AT1R and P2Y6R formed stable heterodimers, which enhanced G protein-dependent vascular hypertrophy but reduced β-arrestin-dependent AT1R internalization. Pharmacological disruption of AT1R-P2Y6R heterodimers by the P2Y6R antagonist MRS2578 suppressed Ang II-induced hypertension in mice. Furthermore, P2Y6R abundance increased with age in vascular smooth muscle cells. The increased abundance of P2Y6R converted AT1R-stimulated signaling in vascular smooth muscle cells from β-arrestin-dependent proliferation to G protein-dependent hypertrophy. These results suggest that increased formation of AT1R-P2Y6R heterodimers with age may increase the likelihood of hypertension induced by Ang II.
  3. Kong MS, Hashimoto-Tane A, Kawashima Y, Sakuma M, Yokosuka T, Kometani K, et al.
    Sci Signal, 2019 Feb 05;12(567).
    PMID: 30723173 DOI: 10.1126/scisignal.aav4373
    T cell activation is initiated by signaling molecules downstream of the T cell receptor (TCR) that are organized by adaptor proteins. CIN85 (Cbl-interacting protein of 85 kDa) is one such adaptor protein. Here, we showed that CIN85 limited T cell responses to TCR stimulation. Compared to activated wild-type (WT) T cells, those that lacked CIN85 produced more IL-2 and exhibited greater proliferation. After stimulation of WT T cells with their cognate antigen, CIN85 was recruited to the TCR signaling complex. Early TCR signaling events, such as phosphorylation of ζ-chain-associated protein kinase 70 (Zap70), Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP76), and extracellular signal-regulated kinase (Erk), were enhanced in CIN85-deficient T cells. The inhibitory function of CIN85 required the SH3 and PR regions of the adaptor, which associated with the phosphatase suppressor of TCR signaling-2 (Sts-2) after TCR stimulation. Together, our data suggest that CIN85 is recruited to the TCR signaling complex and mediates inhibition of T cell activation through its association with Sts-2.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links