A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy.
The effects of the charged ion species 4He, 12C and 20Ne on glioblastoma multiforme (GBM) T98G, U87 and LN18 cell lines were compared with the effects of 200 kVp X-rays (1.7 keV/μm). These cell lines have different genetic profiles. Individual GBM relative biological effectiveness (RBE) was estimated in two ways: the RBE10 at 10% survival fraction and the RBE2Gy after 2 Gy doses. The linear quadratic model radiosensitivity parameters α and β and the α/β ratio of each ion type were determined as a function of LET. Mono-energetic 4He, 12C and 20Ne ions were generated by the Heavy Ion Medical Accelerator at the National Institute of Radiological Sciences in Chiba, Japan. Colony-formation assays were used to evaluate the survival fractions. The LET of the various ions used ranged from 2.3 to 100 keV/μm (covering the depth-dose plateau region to clinically relevant LET at the Bragg peak). For U87 and LN18, the RBE10 increased with LET and peaked at 85 keV/μm, whereas T98G peaked at 100 keV/μm. All three GBM α parameters peaked at 100 keV/μm. There is a statistically significant difference between the three GBM RBE10 values, except at 100 keV/μm (P < 0.01), and a statistically significant difference between the α values of the GBM cell lines, except at 85 and 100 keV/μm. The biological response varied depending on the GBM cell lines and on the ions used.
The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments.
The purpose of this study was to evaluate the efficacy and toxicity of radiotherapy concurrently with weekly cisplatin, followed by adjuvant chemotherapy, for the treatment of N2-3 nasopharyngeal cancer (NPC) in Asian countries, especially regions of South and Southeast Asian countries where NPC is endemic. Between 2005 and 2009, 121 patients with NPC (T1-4 N2-3 M0) were registered from Vietnam, Malaysia, Indonesia, Thailand, The Philippines, China and Bangladesh. Patients were treated with 2D radiotherapy concurrently with weekly cisplatin (30 mg/m (2)), followed by adjuvant chemotherapy, consisting of cisplatin (80 mg/m(2) on Day 1) and fluorouracil (800 mg/m(2) on Days 1-5) for 3 cycles. Of the 121 patients, 56 patients (46%) required interruption of RT. The reasons for interruption of RT were acute non-hematological toxicities such as mucositis, pain and dermatitis in 35 patients, hematological toxicities in 11 patients, machine break-down in 3 patients, poor general condition in 2 patients, and others in 8 patients. Of the patients, 93% completed at least 4 cycles of weekly cisplatin during radiotherapy, and 82% completed at least 2 cycles of adjuvant chemotherapy. With a median follow-up time of 46 months for the surviving 77 patients, the 3-year locoregional control, distant metastasis-free survival and overall survival rates were 89%, 74% and 66%, respectively. No treatment-related deaths occurred. Grade 3-4 toxicities of mucositis, nausea/vomiting and leukopenia were observed in 34%, 4% and 4% of the patients, respectively. In conclusion, further improvement in survival and locoregional control is necessary, although our regimen showed acceptable toxicities.
The aim of this study was to evaluate the toxicity and efficacy of radiotherapy concurrent with weekly cisplatin for T3-4 and N0-1 nasopharyngeal cancer. Between 2005 and 2010, 70 patients with nasopharyngeal cancer (T3-4 N0-1 M0, World Health Organization Type 2-3) from Vietnam, Indonesia, Malaysia and Thailand were registered. Patients were treated with 2D radiotherapy concurrent with weekly cisplatin (30 mg/m(2)). Neither adjuvant nor induction chemotherapy was given. Ninety-three percent of the patients completed at least four cycles of weekly cisplatin during radiotherapy. The median total doses for the primary tumor and positive lymph nodes were 70 and 66 Gy, respectively. The median overall treatment time of concurrent chemoradiotherapy was 52 days. No treatment-related deaths occurred. Grade 3-4 acute toxicities of mucositis, nausea/vomiting and leukopenia were observed in 34%, 4% and 4% of patients, respectively. With a median follow-up time of 52 months for the 40 surviving patients, the 3-year local control, locoregional tumor control, distant metastasis-free survival and overall survival rates were 80%, 75%, 74% and 80%, respectively. In conclusion, the current results illustrate that our concurrent chemoradiotherapy regimen was feasible, but disease control remained insufficient. Further research is encouraged in order to improve clinical outcomes.
3D image-guided brachytherapy (3D-IGBT) has become a standard therapy for cervical cancer. However, the use of 3D-IGBT is limited in East and Southeast Asia. This study aimed to clarify the current usage patterns of 3D-IGBT for cervical cancer in East and Southeast Asia. A questionnaire-based survey was performed in 11 countries within the framework of the Forum for Nuclear Cooperation in Asia. The questionnaire collected the treatment information of patients with cervical cancer who underwent 3D-IGBT. The cumulative external beam radiotherapy and 3D-IGBT doses were summarized and normalized to a biological equivalent dose of 2 Gy per fraction (EQD2) using a linear-quadratic model. Of the 11 institutions representing the participating countries, six (55%) responded to the questionnaire. Overall, data of 36 patients were collected from the six institutions. Twenty-one patients underwent whole-pelvic irradiation and 15 underwent whole-pelvic irradiation with central shielding. Patients received a median of four treatment sessions of 3D-IGBT (range, 2-6). All 3D-IGBT sessions were computed tomography (CT)-based and not magnetic resonance image-based. The median doses to the high-risk clinical target volume D90, bladder D2cc, rectum D2cc and sigmoid colon D2cc were 80.9 Gy EQD2 (range, 58.9-105.9), 77.7 Gy EQD2 (range, 56.9-99.1), 68.0 Gy EQD2 (range, 48.6-90.7) and 62.0 Gy EQD2 (range, 39.6-83.7), respectively. This study elucidated the current patterns of 3D-IGBT for the treatment of cervical cancer in East and Southeast Asia. The results indicate the feasibility of observational studies of CT-based 3D-IGBT for cervical cancer in these countries.
The International Atomic Energy Agency (IAEA) and Hiroshima International Council for Health Care of the Radiation-Exposed (HICARE) jointly organized two relevant workshops in Hiroshima, Japan, i.e. a Training Meeting 'Biodosimetry in the 21st century' (BIODOSE-21) on 10-14 June 2013 and a Workshop on 'Biological and internal dosimetry: recent advance and clinical applications' which took place between 17 and 21 February 2020. The main objective of the first meeting was to develop the ability of biodosimetry laboratories to use mature and novel techniques in biological dosimetry for the estimation of radiation doses received by individuals and populations. This meeting had a special focus on the Asia-Pacific region and was connected with the then on-going IAEA Coordinated Research Project (CRP) E35008 'Strengthening of "Biological dosimetry" in IAEA Member States: Improvement of current techniques and intensification of collaboration and networking among the different institutes' (2012-17). The meeting was attended by 25 participants, which included 11 lecturers. The 14 trainees for this meeting came from India, Indonesia, Japan, Malaysia, Philippines, Republic of Korea, Singapore, Thailand and Vietnam. During the meeting 13 lectures by HICARE and IAEA invited lecturers were delivered besides eight research reports presented by the IAEA CRP E35008 network centers from the Asia-Pacific region. Two laboratory exercises were also undertaken, one each at Hiroshima University and the Radiation Effects Research Foundation (RERF). The second training workshop aimed to discuss with the participants the use of mature and novel techniques in biological and internal dosimetry for the estimation of radiation effects by accidental, environmental and medical exposures. The workshop was attended by 19 participants from Indonesia, Jordan, Oman, Philippines, Singapore, Syrian Arab Republic, Thailand, UAE, USA and Yemen. The main outcome of both meetings was a review of the state-of-the-art of biodosimetry and internal dosimetry and their future perspectives in medical management. This report highlights the learning outcome of two meetings for the benefit of all stake-holders in the field of biological and internal dosimetry.
Glioblastoma (GBM), a Grade IV brain tumour, is a well-known radioresistant cancer. To investigate one of the causes of radioresistance, we studied the capacity for potential lethal damage repair (PLDR) of three altered strains of GBM: T98G, U87 and LN18, irradiated with various ions and various levels of linear energy transfer (LET). The GBM cells were exposed to 12C and 28Si ion beams with LETs of 55, 100 and 200 keV/μm, and with X-ray beams of 1.7 keV/μm. Mono-energetic 12C ions and 28Si ions were generated by the Heavy Ion Medical Accelerator at the National Institute of Radiological Science, Chiba, Japan. Clonogenic assays were used to determine cell inactivation. The ability of the cells to repair potential lethal damage was demonstrated by allowing one identical set of irradiated cells to repair for 24 h before subplating. The results show there is definite PLDR with X-rays, some evidence of PLDR at 55 keV/μm, and minimal PLDR at 100 keV/μm. There is no observable PLDR at 200 keV/μm. This is the first study, to the authors' knowledge, demonstrating the capability of GBM cells to repair potential lethal damage following charged ion irradiations. It is concluded that a GBM's PLDR is dependent on LET, dose and GBM strain; and the more radioresistant the cell strain, the greater the PLDR.