Displaying all 8 publications

Abstract:
Sort:
  1. Bahrani H, Mohamad J, Paydar MJ, Rothan HA
    Curr Alzheimer Res, 2014 Feb;11(2):206-14.
    PMID: 24479629
    Aquilaria subintegra, locally known as "Gaharu", belongs to the Thymelaeceae family. This plant's leaves have been claimed to be effective for the treatment of Alzheimer's disease (AD) by Malay traditional practitioner in Malaysia. In this research, the chloroform extracts of the leaves and stem of A. subintegra were tested for acetylcholinesterase (AChE) inhibitory activity. The Thin Layer Chromatography (TLC) results indicated the presence of phenols, flavonoids, terpenoids, and alkaloids compounds in the extracts. Analysis of the stem chloroform extracts with LCMS/MS displayed that it contains kaempferol 3,4,7-trimethyl ether. The AChE inhibitory activity of leaves and stem chloroform extracts and kaempferol were 80%, 93% and 85.8%, respectively. The Brine Shrimp Lethality Assay (BSLA) exhibited low to moderate toxicity of the chloroform extract from leaves (LC50=531.18 ± 49.53 μg/ml), the stem chloroform extract (LC50=407.34 ± 68.05 μg/ml) and kaempferol (LC50=762.41 ± 45.09 μg/ml). The extracts and kaempferol were not cytotoxic to human umbilical vein endothelial cells (HUVEC), human normal gastric epithelial cell line (GES-1) and human normal hepatic cell line (WRL-68). The effect of leaf and stem chloroform extracts and kaempferol were determined in the Radial Arm Maze (RAM) after administration by oral gavage to ICR male and female mice with valium-impaired memory. Administration of kaempferol to the mice significantly reduced the number of repeated entries into the arms of maze in males and females. In conclusion, the inhibition of AChE by leaf and stem chloroform extracts of A. subintegra could be due to the presence of kaempferol. This extract is safe for use as a natural AChE inhibitor as an alternative to berberine for the treatment of AD.
  2. Chan EWL, Yeo ETY, Wong KWL, See ML, Wong KY, Gan SY
    Curr Alzheimer Res, 2019;16(3):251-260.
    PMID: 30819080 DOI: 10.2174/1567205016666190228124630
    BACKGROUND: Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that eventually leads to severe cognitive impairment. Although the exact etiologies of AD still remain elusive, increasing evidence suggests that neuroinflammation cascades mediated by microglial cells are associated with AD. Piper sarmentosum Roxb. (PS) is a medicinal plant reported to possess various biological properties, including anti-inflammatory, anti-psychotic and anti-oxidant activity. However, little is known about the anti-inflammatory activity of PS roots despite their traditional use to treat inflammatory- mediated ailments.

    OBJECTIVE: This study aimed to evaluate the anti-inflammatory and neuroprotective properties of extracts obtained from the roots of PS against beta-amyloid (Aβ)-induced microglial toxicity associated with the production of pro-inflammatory mediators.

    METHOD: BV2 microglial cells were treated with hexane (RHXN), dichloromethane (RDCM), ethyl acetate (REA) and methanol (RMEOH) extracts of the roots of PS prior to activation by Aβ. The production and mRNA expression of pro-inflammatory mediators were evaluated by Griess reagent, ELISA kits and RT-qPCR respectively. The phosphorylation status of p38α MAPK was determined via western blot assay. BV2 conditioned medium was used to treat SH-SY5Y neuroblastoma cells and the neuroprotective effect was assessed using MTT assay.

    RESULTS: PS root extracts, in particular RMEOH significantly attenuated the production and mRNA expression of IL-1β, IL-6 and TNF-α in Aβ-induced BV2 microglial cells. In addition, RHXN, REA and RMEOH extracts significantly reduced nitric oxide (NO) level and the inhibition of NO production was correlated with the total phenolic content of the extracts. Further mechanistic studies suggested that PS root extracts attenuated the production of cytokines by regulating the phosphorylation of p38α MAPK in microglia. Importantly, PS root extracts have protective effects against Aβ-induced indirect neurotoxicity either by inhibiting the production of NO, IL-1β, IL-6, and TNF-α in BV2 cells or by protecting SHSY5Y cells against these inflammatory mediators.

    CONCLUSIONS: These findings provided evidence that PS root extracts confer neuroprotection against Aβ- induced microglial toxicity associated with the production of pro-inflammatory mediators and may be a potential therapeutic agent for inflammation-related neurological conditions including Alzheimer's disease (AD).

  3. Chan HH, Koh RY, Lim CL, Leong CO
    Curr Alzheimer Res, 2019;16(10):907-918.
    PMID: 31642777 DOI: 10.2174/1567205016666191023102422
    Alzheimer's Disease (AD) is an age-dependent neurodegenerative disorder, the most common type of dementia that is clinically characterized by the presence of beta-amyloid (Aβ) extracellularly and intraneuronal tau protein tangles that eventually leads to the onset of memory and cognition impairment, development of psychiatric symptoms and behavioral disorders that affect basic daily activities. Current treatment approved by the U.S Food and Drug Administration (FDA) for AD is mainly focused on the symptoms but not on the pathogenesis of the disease. Recently, receptor-interacting protein kinase 1 (RIPK1) has been identified as a key component in the pathogenesis of AD through necroptosis. Furthermore, genetic and pharmacological suppression of RIPK1 has been shown to revert the phenotype of AD and its mediating pathway is yet to be deciphered. This review is aimed to provide an overview of the pathogenesis and current treatment of AD with the involvement of autophagy as well as providing a novel insight into RIPK1 in reverting the progression of AD, probably through an autophagy machinery.
  4. Ha ZY, Ong HC, Oo CW, Yeong KY
    Curr Alzheimer Res, 2020;17(13):1177-1185.
    PMID: 33602088 DOI: 10.2174/1567205018666210218151228
    BACKGROUND: Benzimidazole is an interesting pharmacophore which has been extensively studied in medicinal chemistry due to its high affinity towards various enzymes and receptors. Its derivatives have been previously shown to possess a wide range of biological activities including anthelmintic, antihypertensive, antiulcer, as well as anticholinesterase activity.

    OBJECTIVE: The objective of this study is to search for more potent benzimidazole-based cholinesterase inhibitors, through the modification of the 1- and 2-positions of the benzimidazole core.

    METHODS: Synthesis of compounds were carried out via a 4-step reaction scheme following a previously reported protocol. Structure-activity relationship of the compounds are established through in vitro cholinesterase assays and in silico docking studies. Furthermore, cytotoxicity and blood brain barrier (BBB) permeability of the compounds were also investigated.

    RESULTS: Among the synthesised compounds, three of them (5IIa, 5IIb, and 5IIc) exhibited potent selective butyrylcholinesterase inhibition at low micromolar level. The compounds did not show any significant cytotoxicity when tested against a panel of human cell lines. Moreover, the most active compound, 5IIc, was highly permeable across the blood brain barrier.

    CONCLUSION: In total 10 benzimidazole derivatives were synthesized and screened for their AChE and BuChE inhibitory activities. Lead compound 5Iic, represents a valuable compound for further development as potential AD therapeutics.

  5. Momtaz YA, Haron SA, Hamid TA, Ibrahim R, Tanjani PT
    Curr Alzheimer Res, 2018;15(2):195-200.
    PMID: 28982334 DOI: 10.2174/1567205014666171004114246
    BACKGROUND: The findings from previous studies exploring the association between BMI and cognitive function in the elderly are conflicting. The purpose of the present study is twofold; to verify the association between BMI and cognitive functions and examine whether this association is impacted by height, when adjusted for possible covariates.

    METHODS: The data for this study, consisted of 2287 older adults aged 60 years and above, drawn from a nationally representative population-based survey entitled "Determinants of Wellness among Older Malaysians: A Health Promotion Perspective" conducted in 2009.

    RESULTS: The mean age of the respondents was 68.7 (SD=6.6) years. The average score of cognitive function, measured by MMSE was 24.5 (SD=5.6). About 40% of the respondents were classified as overweight. Results of the multiple linear regression analysis revealed a significant association between BMI and cognitive function (Beta=.10, p

  6. Khleifat KM, Al-Tawarah NM, Al-Kafaween MA, Al-Ksasbeh W, Qaralleh H, Alqaraleh M, et al.
    Curr Alzheimer Res, 2023;20(3):190-201.
    PMID: 37317907 DOI: 10.2174/1567205020666230614143027
    BACKGROUND/OBJECTIVE: Alzheimer's disease (AD) is mainly characterized by amnesia that affects millions of people worldwide. This study aims to explore the effectiveness capacities of bee venom (BV) for the enhancement of the memory process in a rat model with amnesia-like AD.

    METHODS: The study protocol contains two successive phases, nootropic and therapeutic, in which two BV doses (D1; 0.25 and D2: 0.5 mg/kg i.p.) were used. In the nootropic phase, treatment groups were compared statistically with a normal group. Meanwhile, in the therapeutic phase, BV was administered to scopolamine (1mg/kg) to induce amnesia-like AD in a rat model in which therapeutic groups were compared with a positive group (donepezil; 1mg/kg i.p.). Behavioral analysis was performed after each phase by Working Memory (WM) and Long-Term Memory (LTM) assessments using radial arm maze (RAM) and passive avoidance tests (PAT). Neurogenic factors; Brain-derived neurotrophic factor (BDNF), and Doublecortin (DCX) were measured in plasma using ELISA and Immunohistochemistry analysis of hippocampal tissues, respectively.

    RESULTS: During the nootropic phase, treatment groups demonstrated a significant (P < 0.05) reduction in RAM latency times, spatial WM errors, and spatial reference errors compared with the normal group. In addition, the PA test revealed a significant (P < 0.05) enhancement of LTM after 72 hours in both treatment groups; D1 and D2. In the therapeutic phase, treatment groups reflected a significant (P < 0.05) potent enhancement in the memory process compared with the positive group; less spatial WM errors, spatial reference errors, and latency time during the RAM test, and more latency time after 72 hours in the light room. Moreover, results presented a marked increase in the plasma level of BDNF, as well as increased hippocampal DCX-positive data in the sub-granular zone within the D1 and D2 groups compared with the negative group (P < 0.05) in a dose-dependent manner.

    CONCLUSION: This study revealed that injecting BV enhances and increases the performance of both WM and LTM. Conclusively, BV has a potential nootropic and therapeutic activity that enhances hippocampal growth and plasticity, which in turn improves WM and LTM. Given that this research was conducted using scopolamine-induced amnesia-like AD in rats, it suggests that BV has a potential therapeutic activity for the enhancement of memory in AD patients in a dose-dependent manner but further investigations are needed.

  7. Chan EWL, Yeo ETY, Wong KWL, See ML, Wong KY, Yap JKY, et al.
    Curr Alzheimer Res, 2021;18(1):80-87.
    PMID: 33761853 DOI: 10.2174/1567205018666210324124239
    BACKGROUND: In Alzheimer's disease, accumulation of beta amyloid (Aβ) triggers amyloidogenesis and hyperphosphorylation of tau protein leading to neuronal cell death. Piper sarmentosum Roxb. (PS) is a traditional medicinal herb used by Malay to treat rheumatism, headache and boost memory. It possesses various biological effects, such as anti-cholinergic, anti-inflammatory, anti-oxidant and anti-depressant-like effects.

    OBJECTIVE: The present study aimed to investigate neuroprotective properties of PS against Aβ-induced neurotoxicity and to evaluate its potential mechanism of action.

    METHODS: Neuroprotective effects of hexane (HXN), dichloromethane (DCM), ethyl acetate (EA) and methanol (MEOH) extracts from leaves (L) and roots (R) of PS against Aβ-induced neurotoxicity were investigated in SH-SY5Y human neuroblastoma cells. Cells were pre-treated with PS for 24 h followed by 24 h of induction with Aβ. The neuroprotective effects of PS were studied using cell viability and cellular reactive oxygen species (ROS) assays. The levels of extracellular Aβ and tau proteins phosphorylated at threonine 231 (pT231) were determined. Gene and protein expressions were assessed using qRT-PCR analyses and western blot analyses, respectively.

    RESULTS: Hexane extracts of PS (LHXN and RHXN) protected SH-SY5Y cells against Aβ-induced neurotoxicity, and decreased levels of extracellular Aβ and phosphorylated tau (pT231). Although extracts of PS inhibited Aβ-induced ROS production, it was unlikely that neuroprotective effects were simply due to the anti-oxidant capacity of PS. Further, mechanistic study suggested that the neuroprotective effects of PS might be due to its capability to regulate amyloidogenesis through the downregulation of BACE and APP.

    CONCLUSION: These findings suggest that hexane extracts of PS confer neuroprotection against Aβ- induced neurotoxicity in SH-SY5Y cells by attenuating amyloidogenesis and tau hyperphosphorylation. Due to its neuroprotective properties, PS might be a potential therapeutic agent for Alzheimer's disease.

  8. Tsagkaris C, Bilal M, Aktar I, Aboufandi Y, Tas A, Aborode AT, et al.
    Curr Alzheimer Res, 2022 Sep 08.
    PMID: 36089786 DOI: 10.2174/1567205019666220908084559
    The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), a respiratory pathogen with neuroinvasive potential. Neurological COVID-19 manifestations include loss of smell and taste, headache, dizziness, stroke, and potentially fatal encephalitis. Several studies found elevated proinflammatory cytokines such as TNF-α, IFN-γ, IL-6 IL-8, IL-10 IL-16, IL-17A, and IL-18 in severely and critically ill COVID-19 patients, which may persist even after apparent recovery from infection. Biomarker studies on CSF and plasma and serum from COVID-19 patients have also shown a high level of IL-6, intrathecal IgG, neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and tau protein. Emerging evidence on the matter has established the concept of COVID-19 associated neuroinflammation, in the context of COVID-19 associated cytokine storm. While the short-term implications of this condition are extensively documented, its long-term implications are yet to be understood. The association of the aforementioned cytokines with the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis, may increase COVID-19 patients' risk to develop neurodegenerative diseases. Analysis of proinflammatory cytokines and CSF biomarkers in patients with COVID-19 can contribute to the early detection of the disease's exacerbation, monitoring the neurological implications of the disease and devising risk scales, and identifying treatment targets.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links