Non-living biomass of Pycnoporus sanguineus has an ability to take up lead,copper and cadmium ions from an aqueous solution. The role played by various functional groups in the cell wall and the mechanism uptake of lead, copper and cadmium by Pycnoporus sanguineus were investigated. Modification of the functional groups such as lipids, carboxylic and amino was done through chemical pretreatment in order to study their role in biosorption of metal ions. Results showed that the chemical modification of these functional groups has modified the ability of biomass to remove lead, copper and cadmium ions from the solution. Scanning electron microscopy was also used to study the morphological structure of the biomass before and after adsorption. The electron micrograph indicated that the structure of biomass changed due to the adsorption of the metals onto the cell walls. Furthermore, the X-ray energy dispersion analysis (EDAX) showed that the calcium ion present in the cell wall of biomass was released and replaced by lead ions. This implied that an ion exchange is one of the principal mechanisms for metal biosorption.
The equilibrium sorption capacity of a macro-fungi, Pycnoporus sanguineus biomass was studied using a single-metal system comprising copper ions. The rate and extent for the removal of copper were subjected to environmental parameters such as pH, biomass loading, temperature, and contact time. Results showed that the uptake of copper increased as the pH increased. However, as the biomass loading increased, the amount of metal uptake decreased. Instead, temperature does not have a significant effect on the metal uptake, especially between 30 to 40 degrees C. A maximum adsorption of copper ions was also observed within 15 minutes of reaction time for the entire sample tested. Furthermore, pre-treatment with sodium bicarbonate and boiling water significantly improved the sorption capacity of copper by Pycnoporus sanguineus.
The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.