Attention-deficit/hyperactivity disorder (AD/HD) is a heterogeneous neurodevelopmental condition, posing a severe threat to quality of life. Pharmacological therapies are the front-line treatment; however, their shortages encourage the development of alternative treatments for AD/HD. One promising method of developing alternative treatments is cognitive training (CT). A CT-based therapy was recently approved by the US Food and Drug Administration. However, due to heterogeneity in AD/HD, a CT protocol is unlikely to provide a one-size-fits-all solution for all patients with AD/HD. Therefore, this article highlights key aspects that need to be considered to further develop CT protocols for AD/HD, regarding training content, timing, suitability, and delivery mode. The perspectives presented here contribute to optimizing CT as an alternative option for treating AD/HD.
While the empathizing-systemizing (E-S) theory provides a valuable framework for explaining gender differences in STEM majors, previous studies suffer from methodological issues (i.e., the arbitrary cut-off criteria and WEIRD sampling) as well as discrepancies in the behavioral correlates of E-S types. To address the gaps, this study utilized a 3-step latent profile analysis to identify naturally occurring E-S profiles in a Chinese sample and explored the predictors and distal outcomes of the identified profiles. The study recruited 785 (aged 18-25 years, 60% female) Chinese undergraduates. Results revealed five E-S profiles: Disengaged, Empathizers, Navigating systemizers, Technological systemizers, and Self-declared allrounders. Controlling for socioeconomic status, being male predicted a higher likelihood of membership into the Technological systemizers. Besides, membership to the Navigating systemizers and Technological systemizers was associated with better intuitive physics performance. However, no significant variation was observed for social sensitivity performance across E-S profiles. Overall, our results partially conformed to previous findings, highlighting the importance of cultural adaptation and methodological considerations when classifying students' cognitive types.
Light-addressable potentiometric sensors (LAPS) are of great interest in bioimaging applications such as the monitoring of concentrations in microfluidic channels or the investigation of metabolic and signaling events in living cells. By measuring the photocurrents at electrolyte-insulator-semiconductor (EIS) and electrolyte-semiconductor structures, LAPS can produce spatiotemporal images of chemical or biological analytes, electrical potentials and impedance. However, its commercial applications are often restricted by their limited AC photocurrents and resolution of LAPS images. Herein, for the first time, the use of 1D semiconducting oxides in the form of ZnO nanorods for LAPS imaging is explored to solve this issue. A significantly increased AC photocurrent with enhanced image resolution has been achieved based on ZnO nanorods, with a photocurrent of 45.7 ± 0.1 nA at a light intensity of 0.05 mW, a lateral resolution as low as 3.0 μm as demonstrated by images of a PMMA dot on ZnO nanorods and a pH sensitivity of 53 mV/pH. The suitability of the device for bioanalysis and bioimaging was demonstrated by monitoring the degradation of a thin poly(ester amide) film with the enzyme α-chymotrypsin using LAPS. This simple and robust route to fabricate LAPS substrates with excellent performance would provide tremendous opportunities for bioimaging.
Inflammatory conditions are frequently accompanied by increased levels of active proteases, and there is rising interest in methods for their detection to monitor inflammation in a point of care setting. In this work, new sensor materials for disposable single-step protease biosensors based on poly(2-oxazoline) hydrogels cross-linked with a protease-specific cleavable peptide are described. The performance of the sensor material was assessed targeting the detection of matrix metalloproteinase-9 (MMP-9), a protease that has been shown to be an indicator of inflammation in multiple sclerosis and other inflammatory conditions. Films of the hydrogel were formed on gold-coated quartz crystals using thiol-ene click chemistry, and the cross-link density was optimized. The degradation rate of the hydrogel was monitored using a quartz crystal microbalance (QCM) and showed a strong dependence on the MMP-9 concentration. A concentration range of 0-160 nM of MMP-9 was investigated, and a lower limit of detection of 10 nM MMP-9 was determined.
Peptide cross-linked poly(ethylene glycol) hydrogel has been widely used for drug delivery and tissue engineering. However, the use of this material as a biosensor for the detection of collagenase has not been explored. Proteases play a key role in the pathology of diseases such as rheumatoid arthritis and osteoarthritis. The detection of this class of enzyme using the degradable hydrogel film format is promising as a point-of-care device for disease monitoring. In this study, a protease biosensor was developed based on the degradation of a peptide cross-linked poly(ethylene glycol) hydrogel film and demonstrated for the detection of collagenase. The hydrogel was deposited on gold-coated quartz crystals, and their degradation in the presence of collagenase was monitored using a quartz crystal microbalance (QCM). The biosensor was shown to respond to concentrations between 2 and 2000 nM in less than 10 min with a lower detection limit of 2 nM.
Improving neurocognitive functions through remote interventions has been a promising approach to developing new treatments for attention-deficit/hyperactivity disorder (AD/HD). Remote neurocognitive interventions may address the shortcomings of the current prevailing pharmacological therapies for AD/HD, e.g., side effects and access barriers. Here we review the current options for remote neurocognitive interventions to reduce AD/HD symptoms, including cognitive training, EEG neurofeedback training, transcranial electrical stimulation, and external cranial nerve stimulation. We begin with an overview of the neurocognitive deficits in AD/HD to identify the targets for developing interventions. The role of neuroplasticity in each intervention is then highlighted due to its essential role in facilitating neuropsychological adaptations. Following this, each intervention type is discussed in terms of the critical details of the intervention protocols, the role of neuroplasticity, and the available evidence. Finally, we offer suggestions for future directions in terms of optimizing the existing intervention protocols and developing novel protocols.