Displaying 1 publication

Abstract:
Sort:
  1. Ahmad Razin Zainal Abidin, Shaymaa Mustafa, Zainal Abdul Aziz and, Kamarudin Ismail
    MATEMATIKA, 2018;34(2):173-186.
    MyJurnal
    Subsea cable laying process is a difficult task for an engineer due to many
    uncertain situations which occur during the operation. It is very often that the cable being
    laid out is not perfectly fit on the route being planned, which results in the formation of
    slack. In order to control wastages during installation, the slack needs to be minimized
    and the movement of a ship/vessel needs to be synchronized with the cable being laid out.
    The current problem was addressed using a mathematical model by considering a number
    of defining parameters such as the external forces, the cable properties and geometry. Due
    to the complexity, the model is developed for a steady-state problem assuming velocity
    of the vessel is constant, seabed is flat and the effect of wind and wave is insignificant.
    Non-dimensional system is used to scale the engineering parameters and grouped them
    into only two main parameters which are the hydrodynamic drag of the fluid and the
    bending stiffness of the cable. There are two solutions generated in this article; numerical
    and asymptotic solutions. The result of these solutions suggests that the percentage of
    slack can be reduced by the increase of the prescribed cable tension, and also the increase
    in either the drag coefficient of the sea water or the bending stiffness of the cable, similarly
    will result in lower slack percentage
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links