Soda lime silica (SLS) waste as the source of silica (SiO2) and ark clamshell (ACS) as the foaming agent has been utilized to fabricate the low-cost and lightweight foam glass-ceramics. A series of 1 and 6 wt% foam glass-ceramics were successfully prepared by the conventional solid-state sintering method at various sintering temperatures for 60 min. The bulk density of the samples has achieved minimum density (1.014 g/cm3) with maximum expansion (62.31%) at 6 wt% of the ACS content sintered at 800 °C for 60 min. The bulk density increases while the linear shrinkage and total porosity decrease with the progression of ACS contents and sintering temperature, where the results correspond with the FESEM micrograph. The result of XRD and FTIR transmittance spectra have shown that the formation of wollastonite crystal has occurred starting at 6 wt% of the ACS content sintered at 800 °C for 30 min. The highest mechanical performance (3.90 MPa) with an average total porosity (8.04%) is observed for the sample containing 1 wt% of ACS. It can be concluded that the composition of foam glass-ceramics (1 and 6 wt%) and sintering temperatures give significant results to the structural, physical, and mechanical properties of the fabricated foam glass-ceramics.
The contemporary market needs for enhanced solid-state lighting devices has led to an increased demand for the production of willemite based phosphors using low-cost techniques. In this study, Ce3+ doped willemite nanoparticles were fabricated using polymer thermal treatment method. The special effects of the calcination temperatures and the dopant concentration on the structural and optical properties of the material were thoroughly studied. The XRD analysis of the samples treated at 900 °C revealed the development and or materialization of the willemite phase. The increase in the dopant concentration causes an expansion of the lattice owing to the replacement of larger Ce3+ ions for smaller Zn2+ ions. Based on the FESEM and TEM micrographs, the nanoparticles size increases with the increase in the cerium ions. The mean particles sizes were estimated to be 23.61 nm at 1 mol% to 34.02 nm at 5 mol% of the cerium dopant. The optical band gap energy of the doped samples formed at 900 °C decreased precisely by 0.21 eV (i.e., 5.21 to 5.00 eV). The PL analysis of the doped samples exhibits a strong emission at 400 nm which is ascribed to the transition of an electron from localized Ce2f state to the valence band of O2p. The energy level of the Ce3+ ions affects the willemite crystal lattice, thus causing a decrease in the intensity of the green emission at 530 nm and the blue emission at 485 nm. The wide optical band gap energy of the willemite produced is expected to pave the way for exciting innovations in solid-state lighting applications.
In this work, waste coconut husk ash was used to prepare a ZnO-SiO2 composite. Solid-state technique was used to fabricate the composite due to its producibility, simple procedure as well as lower production cost. At high sintering temperatures ranging from 600 °C to 1000 °C, the X-ray diffraction (XRD) peaks of the Zn2SiO4 showed high intensity, which indicated high crystallinity. Furthermore, the formation of broad bands of ZnO4, Si-O-Si, and SiO4 were detected by Fourier transform infrared (FTIR) spectroscopy and the bands became narrower with the increment of sintering temperature. Besides, the morphological image from field emission scanning electron microscopy (FESEM) showed the formation of densely packed grains and smooth surface composite with the increase of sintering temperature. Upon obtaining the absorbance spectrum from Ultraviolet-Visible (UV-Vis) spectroscopy, the optical band gap was calculated to be 4.05 eV at 1000 °C. The correlation between the structural and optical properties of ZnO-SiO2 composite was discussed in detail.
In this paper, the structural and optical properties of ZnO-SiO2-based ceramics fabricated from oil palm empty fruit bunch (OPEFB) were investigated. The OPEFB waste was burned at 600, 700 and 800 °C to form palm ash and was then treated with sulfuric acid to extract silica from the ash. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed the existence of SiO2 in the sample. Field emission scanning electron microscopy (FESEM) showed that the particles displayed an irregular shape and became finer after leaching. Then, the solid-state method was used to produce the ZnO-SiO2 composite and the samples were sintered at 600, 800, 1000, 1200 and 1400 °C. The XRD peaks of the Zn2SiO4 showed high intensity, which indicated high crystallinity of the composite. FESEM images proved that the grain boundaries were larger as the temperature increased. Upon obtaining the absorbance spectrum from ultraviolet-visible (UV-Vis) spectroscopy, the energy band gaps obtained were 3.192, 3.202 and 3.214 eV at room temperature, 600 and 800 °C, respectively, and decreased to 3.127, 2.854 and 2.609 eV at 1000, 1200 and 1400 °C, respectively. OPEFB shows high potential as a silica source in producing promising optical materials.
In this study, a nanocomposite of reduced graphene oxide (RGO) nanofiller-reinforcement poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) matrix was prepared via the melt blending method. The flexibility of PLA was improved by blending the polymer with a PEG plasticizer as a second polymer. To enhance the electromagnetic interference shielding properties of the nanocomposite, different RGO wt % were combined with the PLA/PEG blend. Using Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) and X-ray diffraction, the structural, microstructure, and morphological properties of the polymer and the RGO/PLA/PEG nanocomposites were examined. These studies showed that the RGO addition did not considerably affect the crystallinity of the resulting nanomaterials. Thermal analysis (TGA) reveals that the addition of RGO highly improved the thermal stability of PLA/PEG nanocomposites. The dielectric properties and electromagnetic interference shielding effectiveness of the synthesized nanocomposites were calculated and showed a higher SE total value than the target value (20 dB). On the other hand, the results showed an increased power loss by increasing the frequency and conversely decreased with an increased percentage of filler.
With the trend for green technology, the study focused on utilizing a forgotten herb to produce an eco-friendly coating. Andrographis paniculata or the kalmegh leaves extract (KLE) has been investigated for its abilities in retarding the corrosion process due to its excellent anti-oxidative and antimicrobial properties. Here, KLE was employed as a novel additive in coatings and formulations were made by varying its wt%: 0, 3, 6, 9, and 12. These were applied to stainless steel 316L immersed in seawater for up to 50 days. The samples were characterized and analyzed to measure effectiveness of inhibition of corrosion and microbial growth. The best concentration was revealed to be 6 wt% KLE; it exhibited the highest performance in improving the ionic resistance of the coating and reducing the growth of bacteria.