Methods: Forty fuel dispensing facilities were randomly selected on the basis of three different areas: residential, traffic intersection, and petrol pump locations (refueling stations). Portable ambient analyzer was used for measuring BTX concentration. t-test was applied to determine the difference between these different areas.
Results: All mean concentration values of pollutants such as BTX around residential, traffic intersection, and fuel stations are exceeding the limits of air quality standards values (P < 0.01). The mean levels of benzene are 10.3 and 11.07 ppm in Dammam and Khobar, respectively, and they exceed the reference level of 0.5 ppm. Hazard quotient was more than >1, which shows that carcinogenic probability has increased those who were living and working near fuel stations.
Conclusions: The results found that the high concentration of pollutants (BTX) is in the environment around fuel stations. The environmental contamination associated with BTX in petrol fuel stations impulses the necessity of preventive programs to reduce the further air quality deterioration and reduce the harmful health effects.
METHODS: The cytotoxicity activity was measured using MTS assay. The mode of cell death was analysed by early (phosphatidylserine externalization) and late apoptosis (DNA fragmentation). The caspases 8, 9, 3/7 and apoptotic proteins bax, bcl-2 study were done by western blot and ELISA method.
RESULTS: The methanol extract was found to inhibit 50% growth of T-47D cells at the concentration of 79.43µg/ml respectively after 72hr. From seven fractions, fraction F1, F2 and F3 produced cytotoxicity effects in T-47D cell line with IC50 (72hr) < 30µg/ml. The results obtained by Annexin V/PI apoptosis detection assay and TUNEL assay suggest that active fractions of Vitex rotundifolia induced early and late apoptosis (DNA fragmentation) in T-47D cell line. Moreover, western blot analysis and Caspase GloTM luminescent assay demonstrated that fractions F2 and F3 triggered apoptotic cell death via activation of caspases -8, -9 and -3/7 and up-regulation of Bax and down-regulation of Bcl-2 protein. Furthermore, chemical profiling confirms the presence of potential metabolites (vitexicarpin) in fractions of Vitex rotundifolia.
CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in fractions of Vitex rotundifolia as future cancer therapeutic agent for the treatment of breast cancer.
.