Displaying all 2 publications

Abstract:
Sort:
  1. Nadzirah S, Hashim U, Gopinath SCB, Parmin NA, Hamzah AA, Yu HW, et al.
    Mikrochim Acta, 2020 03 17;187(4):235.
    PMID: 32185529 DOI: 10.1007/s00604-020-4214-y
    A titanium dioxide nanoparticle (TiO2 NP)-mediated resistive biosensor is described for the determination of DNA fragments of Escherichia coli O157:H7 (E. coli O157:H7). The sol-gel method was used to synthesize the TiO2 NP, and microlithography was applied to fabricate the interdigitated sensor electrodes. Conventional E. coli DNA detections are facing difficulties in long-preparation-and-detection-time (more than 3 days). Hence, electronic biosensor was introduced by measuring the current-voltage (I-V) DNA probe without amplification of DNA fragments. The detection scheme is based on the interaction between the electron flow on the sensor and the introduction of negative charges from DNA probe and target DNA. The biosensor has a sensitivity of 1.67 × 1013 Ω/M and a wide analytical range. The limit detection is down to 1 × 10-11 M of DNA. The sensor possesses outstanding repeatability and reproducibility and is cabable to detect DNA within 15 min in a minute-volume sample (1 μL). Graphical abstract Fig. (a) Graphical illustration of electronic biosensor set up and (b) relationship between limit of detection (LOD) and the unaffected poultry samples on E. coli O157:H7.
  2. Abdul Razak NE, Dee CF, Madhuku M, Ahmad I, Chang EY, Yu HW, et al.
    Materials (Basel), 2023 Mar 02;16(5).
    PMID: 36903185 DOI: 10.3390/ma16052070
    The super enhancement of silicon band edge luminescence when co-implanted with boron and carbon is reported. The role of boron in the band edge emissions in silicon was investigated by deliberately introducing defects into the lattice structures. We aimed to increase the light emission intensity from silicon by boron implantation, leading to the formation of dislocation loops between the lattice structures. The silicon samples were doped with a high concentration of carbon before boron implantation and then annealed at a high temperature to activate the dopants into substitutional lattice sites. Photoluminescence (PL) measurements were performed to observe the emissions at the near-infrared region. The temperatures were varied from 10 K to 100 K to study the effect of temperature on the peak luminescence intensity. Two main peaks could be seen at ~1112 and 1170 nm by observing the PL spectra. The intensities shown by both peaks in the samples incorporated with boron are significantly higher than those in pristine silicon samples, and the highest intensity in the former was 600 times greater than that in the latter. Transmission electron microscopy (TEM) was used to study the structure of post-implant and post-anneal silicon sample. The dislocation loops were observed in the sample. Through a technique compatible with mature silicon processing technology, the results of this study will greatly contribute to the development of all Si-based photonic systems and quantum technologies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links